
导语:本文主要介绍了如何理解 PyTorch 中的爱因斯坦求和 (einsum) ,并结合实际例子讲解和 PyTorch C++实现代码解读,希望读者看完本文后掌握 einsum 的基本用法。
撰文|梁德澎
原文首发于公众号GiantpandaCV
爱因斯坦求和约定(einsum)提供了一套既简洁又优雅的规则,可实现包括但不限于:向量内积,向量外积,矩阵乘法,转置和张量收缩(tensor contraction)等张量操作,熟练运用 einsum 可以很方便地实现复杂的张量操作,而且不容易出错。
首先看下 einsum 实现矩阵乘法的例子:
- a = torch.rand(2,3)
- b = torch.rand(3,4)
- c = torch.einsum("ik,kj->ij", [a, b])
- # 等价操作 torch.mm(a, b)
其中需要重点关注的是 einsum 的第一个参数 "ik,kj->ij",该字符串(下文以 equation 表示)表示了输入和输出张量的维度。equation 中的箭头左边表示输入张量,以逗号分割每个输入张量,箭头右边则表示输出张量。表示维度的字符只能是26个英文字母 'a' - 'z'。
而 einsum 的第二个参数表示实际的输入张量列表,其数量要与 equation 中的输入数量对应。同时对应每个张量的 子 equation 的字符个数要与张量的真实维度对应,比如 "ik,kj->ij" 表示输入和输出张量都是两维的。
equation 中的字符也可以理解为索引,就是输出张量的某个位置的值,是怎么从输入张量中得到的,比如上面矩阵乘法的输出 c 的某个点 c[i, j] 的值是通过 a[i, k] 和 b[k, j] 沿着 k 这个维度做内积得到的。
接着介绍两个基本概念,自由索引(Free indices)和求和索引(Summation indices):
自由索引,出现在箭头右边的索引,比如上面的例子就是 i 和 j;
求和索引,只出现在箭头左边的索引,表示中间计算结果需要这个维度上求和之后才能得到输出,比如上面的例子就是 k。
接着是介绍三条基本规则:
规则一:equation 箭头左边,在不同输入之间重复出现的索引表示,把输入张量沿着该维度做乘法操作,比如还是以上面矩阵乘法为例, "ik,kj->ij",k 在输入中重复出现,所以就是把 a 和 b 沿着 k 这个维度作相乘操作;
规则二:只出现在 equation 箭头左边的索引,表示中间计算结果需要在这个维度上求和,也就是上面提到的求和索引;
规则三:equation 箭头右边的索引顺序可以是任意的,比如上面的 "ik,kj->ij" 如果写成 "ik,kj->ji",那么就是返回输出结果的转置,用户只需要定义好索引的顺序,转置操作会在 einsum 内部完成。
特殊规则有两条:
equation 可以不写包括箭头在内的右边部分,那么在这种情况下,输出张量的维度会根据默认规则推导。就是把输入中只出现一次的索引取出来,然后按字母表顺序排列,比如上面的矩阵乘法 "ik,kj->ij" 也可以简化为 "ik,kj",根据默认规则,输出就是 "ij" 与原来一样;
equation 中支持 "..." 省略号,用于表示用户并不关心的索引,比如只对一个高维张量的最后两维做转置可以这么写:
- a = torch.randn(2,3,5,7,9)
- # i = 7, j = 9
- b = torch.einsum('...ij->...ji', [a])
接下来将展示13个具体的例子,在这些例子中会将 PyTorch einsum 与对应的 PyTorch 张量接口和 Python 简单的循环展开实现做对比,希望读者看完这些例子之后能轻松掌握 einsum 的基本用法。
实验代码github链接:
https://github.com/Ldpe2G/CodingForFun/tree/master/einsum_ex
- import torch
- import numpy as np
-
- a = torch.arange(9).reshape(3, 3)
- # i = 3
- torch_ein_out = torch.einsum('ii->i', [a]).numpy()
- torch_org_out = torch.diagonal(a, 0).numpy()
-
- np_a = a.numpy()
- # 循环展开实现
- np_out = np.empty((3,), dtype=np.int32)
- # 自由索引外循环
- for i in range(0, 3):
- # 求和索引内循环
- # 这个例子并没有求和索引,
- # 所以相当于是1
- sum_result = 0
- for inner in range(0, 1):
- sum_result += np_a[i, i]
- np_out[i] = sum_result
-
- print("input:\n", np_a)
- print("torch ein out: \n", torch_ein_out)
- print("torch org out: \n", torch_org_out)
- print("numpy out: \n", np_out)
- print("is np_out == torch_ein_out ?", np.allclose(torch_ein_out, np_out))
- print("is torch_org_out == torch_ein_out ?", np.allclose(torch_ein_out, torch_org_out))
-
- # 终端打印结果
- # input:
- # [[0 1 2]
- # [3 4 5]
- # [6 7 8]]
- # torch ein out:
- # [0 4 8]
- # torch org out:
- # [0 4 8]
- # numpy out:
- # [0 4 8]
- # is np_out == torch_ein_out ? True
- # is torch_org_out == torch_ein_out ? True
- import torch
- import numpy as np
-
- a = torch.arange(6).reshape(2, 3)
- # i = 2, j = 3
- torch_ein_out = torch.einsum('ij->ji', [a]).numpy()
- torch_org_out = torch.transpose(a, 0, 1).numpy()
-
- np_a = a.numpy()
- # 循环展开实现
- np_out = np.empty((3, 2), dtype=np.int32)
- # 自由索引外循环
- for j in range(0, 3):
- for i in range(0, 2):
- # 求和索引内循环
- # 这个例子并没有求和索引
- # 所以相当于是1
- sum_result = 0
- for inner in range(0, 1):
- sum_result += np_a[i, j]
- np_out[j, i] = sum_result
-
- print("input:\n", np_a)
- print("torch ein out: \n", torch_ein_out)
- print("torch org out: \n", torch_org_out)
- print("numpy out: \n", np_out)
- print("is np_out == torch_org_out ?", np.allclose(torch_ein_out, np_out))
- print("is torch_ein_out == torch_org_out ?", np.allclose(torch_ein_out, torch_org_out))
-
- # 终端打印结果
- # input:
- # [[0 1 2]
- # [3 4 5]]
- # torch ein out:
- # [[0 3]
- # [1 4]
- # [2 5]]
- # torch org out:
- # [[0 3]
- # [1 4]
- # [2 5]]
- # numpy out:
- # [[0 3]
- # [1 4]
- # [2 5]]
- # is np_out == torch_org_out ? True
- # is torch_ein_out == torch_org_out ? True
- import torch
- import numpy as np
-
- a = torch.randn(2,3,5,7,9)
- # i = 7, j = 9
- torch_ein_out = torch.einsum('...ij->...ji', [a]).numpy()
- torch_org_out = a.permute(0, 1, 2, 4, 3).numpy()
-
- np_a = a.numpy()
- # 循环展开实现
- np_out = np.empty((2,3,5,9,7), dtype=np.float32)
- # 自由索引外循环
- for j in range(0, 9):
- for i in range(0, 7):
- # 求和索引内循环
- # 这个例子没有求和索引
- sum_result = 0
- for inner in range(0, 1):
- sum_result += np_a[..., i, j]
- np_out[..., j, i] = sum_result
-
- print("is np_out == torch_org_out ?", np.allclose(torch_ein_out, np_out))
- print("is torch_ein_out == torch_org_out ?", np.allclose(torch_ein_out, torch_org_out))
-
- # 终端打印结果
- # is np_out == torch_org_out ? True
- # is torch_ein_out == torch_org_out ? True
- import torch
- import numpy as np
-
- a = torch.arange(6).reshape(2, 3)
- # i = 2, j = 3
- torch_ein_out = torch.einsum('ij->', [a]).numpy()
- torch_org_out = torch.sum(a).numpy()
-
- np_a = a.numpy()
- # 循环展开实现
- np_out = np.empty((1, ), dtype=np.int32)
- # 自由索引外循环
- # 这个例子中没有自由索引
- # 相当于所有维度都加一起
- for o in range(0 ,1):
- # 求和索引内循环
- # 这个例子中,i 和 j
- # 都是求和索引
- sum_result = 0
- for i in range(0, 2):
- for j in range(0, 3):
- sum_result += np_a[i, j]
- np_out[o] = sum_result
-
- print("input:\n", np_a)
- print("torch ein out: \n", torch_ein_out)
- print("torch org out: \n", torch_org_out)
- print("numpy out: \n", np_out)
- print("is np_out == torch_ein_out ?", np.allclose(torch_ein_out, np_out))
- print("is torch_org_out == torch_ein_out ?", np.allclose(torch_ein_out, torch_org_out))
-
- # 终端打印结果
- # input:
- # [[0 1 2]
- # [3 4 5]]
- # torch ein out:
- # 15
- # torch org out:
- # 15
- # numpy out:
- # [15]
- # is np_out == torch_ein_out ? True
- # is torch_org_out == torch_ein_out ? True
- import torch
- import numpy as np
-
- a = torch.arange(6).reshape(2, 3)
- # i = 2, j = 3
- torch_ein_out = torch.einsum('ij->j', [a]).numpy()
- torch_org_out = torch.sum(a, dim=0).numpy()
-
- np_a = a.numpy()
- # 循环展开实现
- np_out = np.empty((3, ), dtype=np.int32)
- # 自由索引外循环
- # 这个例子中是 j
- for j in range(0, 3):
- # 求和索引内循环
- # 这个例子中是 i
- sum_result = 0
- for i in range(0, 2):
- sum_result += np_a[i, j]
- np_out[j] = sum_result
-
- print("input:\n", np_a)
- print("torch ein out: \n", torch_ein_out)
- print("torch org out: \n", torch_org_out)
- print("numpy out: \n", np_out)
- print("is np_out == torch_ein_out ?", np.allclose(torch_org_out, np_out))
- print("is torch_org_out == torch_ein_out ?", np.allclose(torch_org_out, torch_ein_out))
-
- # 终端打印输出
- # input:
- # [[0 1 2]
- # [3 4 5]]
- # torch ein out:
- # [3 5 7]
- # torch org out:
- # [3 5 7]
- # numpy out:
- # [3 5 7]
- # is np_out == torch_ein_out ? True
- # is torch_org_out == torch_ein_out ? True
- import torch
- import numpy as np
-
- a = torch.arange(6).reshape(2, 3)
- b = torch.arange(3)
- # i = 2, k = 3
- torch_ein_out = torch.einsum('ik,k->i', [a, b]).numpy()
- # 等价形式,可以省略箭头和输出
- torch_ein_out2 = torch.einsum('ik,k', [a, b]).numpy()
- torch_org_out = torch.mv(a, b).numpy()
-
- np_a = a.numpy()
- np_b = b.numpy()
- # 循环展开实现
- np_out = np.empty((2, ), dtype=np.int32)
- # 自由索引外循环
- # 这个例子是 i
- for i in range(0, 2):
- # 求和索引内循环
- # 这个例子中是 k
- sum_result = 0
- for k in range(0, 3):
- sum_result += np_a[i, k] * np_b[k]
- np_out[i] = sum_result
-
- print("matrix a:\n", np_a)
- print("vector b:\n", np_b)
- print("torch ein out: \n", torch_ein_out)
- print("torch ein out2: \n", torch_ein_out2)
- print("torch org out: \n", torch_org_out)
- print("numpy out: \n", np_out)
- print("is np_out == torch_ein_out ?", np.allclose(torch_ein_out, np_out))
- print("is torch_ein_out2 == torch_ein_out ?", np.allclose(torch_ein_out2, torch_ein_out))
- print("is torch_org_out == torch_ein_out ?", np.allclose(torch_org_out, torch_ein_out))
-
- # 终端打印输出
- # matrix a:
- # [[0 1 2]
- # [3 4 5]]
- # vector b:
- # [0 1 2]
- # torch ein out:
- # [ 5 14]
- # torch ein out2:
- # [ 5 14]
- # torch org out:
- # [ 5 14]
- # numpy out:
- # [ 5 14]
- # is np_out == torch_ein_out ? True
- # is torch_ein_out2 == torch_ein_out ? True
- # is torch_org_out == torch_ein_out ? True
- import torch
- import numpy as np
-
- a = torch.arange(6).reshape(2, 3)
- b = torch.arange(15).reshape(3, 5)
- # i = 2, k = 3, j = 5
- torch_ein_out = torch.einsum('ik,kj->ij', [a, b]).numpy()
- # 等价形式,可以省略箭头和输出
- torch_ein_out2 = torch.einsum('ik,kj', [a, b]).numpy()
- torch_org_out = torch.mm(a, b).numpy()
-
- np_a = a.numpy()
- np_b = b.numpy()
- # 循环展开实现
- np_out = np.empty((2, 5), dtype=np.int32)
- # 自由索引外循环
- # 这个例子是 i 和 j
- for i in range(0, 2):
- for j in range(0, 5):
- # 求和索引内循环
- # 这个例子是 k
- sum_result = 0
- for k in range(0, 3):
- sum_result += np_a[i, k] * np_b[k, j]
- np_out[i, j] = sum_result
-
- print("matrix a:\n", np_a)
- print("matrix b:\n", np_b)
- print("torch ein out: \n", torch_ein_out)
- print("torch ein out2: \n", torch_ein_out2)
- print("torch org out: \n", torch_org_out)
- print("numpy out: \n", np_out)
- print("is numpy == torch_ein_out ?", np.allclose(torch_ein_out, np_out))
- print("is torch_ein_out2 == torch_ein_out ?", np.allclose(torch_ein_out2, torch_ein_out))
- print("is torch_org_out == torch_ein_out ?", np.allclose(torch_org_out, torch_ein_out))
-
- # 终端打印输出
- # matrix a:
- # [[0 1 2]
- # [3 4 5]]
- # matrix b:
- # [[ 0 1 2 3 4]
- # [ 5 6 7 8 9]
- # [10 11 12 13 14]]
- # torch ein out:
- # [[ 25 28 31 34 37]
- # [ 70 82 94 106 118]]
- # torch ein out2:
- # [[ 25 28 31 34 37]
- # [ 70 82 94 106 118]]
- # torch org out:
- # [[ 25 28 31 34 37]
- # [ 70 82 94 106 118]]
- # numpy out:
- # [[ 25 28 31 34 37]
- # [ 70 82 94 106 118]]
- # is numpy == torch_ein_out ? True
- # is torch_ein_out2 == torch_ein_out ? True
- # is torch_org_out == torch_ein_out ? True
- import torch
- import numpy as np
-
- a = torch.arange(3)
- b = torch.arange(3, 6) # [3, 4, 5]
- # i = 3
- torch_ein_out = torch.einsum('i,i->', [a, b]).numpy()
- # 等价形式,可以省略箭头和输出
- torch_ein_out2 = torch.einsum('i,i', [a, b]).numpy()
- torch_org_out = torch.dot(a, b).numpy()
-
- np_a = a.numpy()
- np_b = b.numpy()
- # 循环展开实现
- np_out = np.empty((1, ), dtype=np.int32)
- # 自由索引外循环
- # 这个例子没有自由索引
- for o in range(0, 1):
- # 求和索引内循环
- # 这个例子是 i
- sum_result = 0
- for i in range(0, 3):
- sum_result += np_a[i] * np_b[i]
- np_out[o] = sum_result
-
- print("vector a:\n", np_a)
- print("vector b:\n", np_b)
- print("torch ein out: \n", torch_ein_out)
- print("torch ein out2: \n", torch_ein_out2)
- print("torch org out: \n", torch_org_out)
- print("numpy out: \n", np_out)
- print("is np_out == torch_ein_out ?", np.allclose(torch_ein_out, np_out))
- print("is torch_ein_out2 == torch_ein_out ?", np.allclose(torch_ein_out2, torch_ein_out))
- print("is torch_org_out == torch_ein_out ?", np.allclose(torch_org_out, torch_ein_out))
-
- # 终端打印输出
- # vector a:
- # [0 1 2]
- # vector b:
- # [3 4 5]
- # torch ein out:
- # 14
- # torch ein out2:
- # 14
- # torch org out:
- # 14
- # numpy out:
- # [14]
- # is np_out == torch_ein_out ? True
- # is torch_ein_out2 == torch_ein_out ? True
- # is torch_org_out == torch_ein_out ? True
- import torch
- import numpy as np
-
- a = torch.arange(6).reshape(2, 3)
- b = torch.arange(6,12).reshape(2, 3)
- # i = 2, j = 3
- torch_ein_out = torch.einsum('ij,ij->', [a, b]).numpy()
- # 等价形式,可以省略箭头和输出
- torch_ein_out2 = torch.einsum('ij,ij', [a, b]).numpy()
- torch_org_out = (a * b).sum().numpy()
-
- np_a = a.numpy()
- np_b = b.numpy()
- # 循环展开实现
- np_out = np.empty((1, ), dtype=np.int32)
- # 自由索引外循环
- # 这个例子没有自由索引
- for o in range(0, 1):
- # 求和索引内循环
- # 这个例子是 i 和 j
- sum_result = 0
- for i in range(0, 2):
- for j in range(0, 3):
- sum_result += np_a[i,j] * np_b[i,j]
- np_out[o] = sum_result
-
- print("matrix a:\n", np_a)
- print("matrix b:\n", np_b)
- print("torch ein out: \n", torch_ein_out)
- print("torch ein out2: \n", torch_ein_out2)
- print("torch org out: \n", torch_org_out)
- print("numpy out: \n", np_out)
- print("is np_out == torch_ein_out ?", np.allclose(torch_ein_out, np_out))
- print("is torch_ein_out2 == torch_ein_out ?", np.allclose(torch_ein_out2, torch_ein_out))
- print("is torch_org_out == torch_ein_out ?", np.allclose(torch_org_out, torch_ein_out))
-
- # 终端打印输出
- # matrix a:
- # [[0 1 2]
- # [3 4 5]]
- # matrix b:
- # [[ 6 7 8]
- # [ 9 10 11]]
- # torch ein out:
- # 145
- # torch ein out2:
- # 145
- # torch org out:
- # 145
- # numpy out:
- # [145]
- # is np_out == torch_ein_out ? True
- # is torch_ein_out2 == torch_ein_out ? True
- # is torch_org_out == torch_ein_out ? True
- import torch
- import numpy as np
-
- a = torch.arange(3)
- b = torch.arange(3,7) # [3, 4, 5, 6]
- # i = 3, j = 4
- torch_ein_out = torch.einsum('i,j->ij', [a, b]).numpy()
- # 等价形式,可以省略箭头和输出
- torch_ein_out2 = torch.einsum('i,j', [a, b]).numpy()
- torch_org_out = torch.outer(a, b).numpy()
-
- np_a = a.numpy()
- np_b = b.numpy()
- # 循环展开实现
- np_out = np.empty((3, 4), dtype=np.int32)
- # 自由索引外循环
- # 这个例子是 i 和 j
- for i in range(0, 3):
- for j in range(0, 4):
- # 求和索引内循环
- # 这个例子没有求和索引
- sum_result = 0
- for inner in range(0, 1):
- sum_result += np_a[i] * np_b[j]
- np_out[i, j] = sum_result
-
- print("vector a:\n", np_a)
- print("vector b:\n", np_b)
- print("torch ein out: \n", torch_ein_out)
- print("torch ein out2: \n", torch_ein_out2)
- print("torch org out: \n", torch_org_out)
- print("numpy out: \n", np_out)
- print("is np_out == torch_ein_out ?", np.allclose(torch_ein_out, np_out))
- print("is torch_ein_out2 == torch_ein_out ?", np.allclose(torch_ein_out2, torch_ein_out))
- print("is torch_org_out == torch_ein_out ?", np.allclose(torch_org_out, torch_ein_out))
-
- # 终端打印输出
- # vector a:
- # [0 1 2]
- # vector b:
- # [3 4 5 6]
- # torch ein out:
- # [[ 0 0 0 0]
- # [ 3 4 5 6]
- # [ 6 8 10 12]]
- # torch ein out2:
- # [[ 0 0 0 0]
- # [ 3 4 5 6]
- # [ 6 8 10 12]]
- # torch org out:
- # [[ 0 0 0 0]
- # [ 3 4 5 6]
- # [ 6 8 10 12]]
- # numpy out:
- # [[ 0 0 0 0]
- # [ 3 4 5 6]
- # [ 6 8 10 12]]
- # is np_out == torch_ein_out ? True
- # is torch_ein_out2 == torch_ein_out ? True
- # is torch_org_out == torch_ein_out ? True
- import torch
- import numpy as np
-
- a = torch.randn(2,3,5)
- b = torch.randn(2,5,4)
- # i = 2, j = 3, k = 5, l = 4
- torch_ein_out = torch.einsum('ijk,ikl->ijl', [a, b]).numpy()
- torch_org_out = torch.bmm(a, b).numpy()
-
- np_a = a.numpy()
- np_b = b.numpy()
- # 循环展开实现
- np_out = np.empty((2, 3, 4), dtype=np.float32)
- # 自由索引外循环
- # 这个例子是 i,j和l
- for i in range(0, 2):
- for j in range(0, 3):
- for l in range(0, 4):
- # 求和索引内循环
- # 这个例子是 k
- sum_result = 0
- for k in range(0, 5):
- sum_result += np_a[i, j, k] * np_b[i, k, l]
- np_out[i, j, l] = sum_result
-
- print("is np_out == torch_ein_out ?", np.allclose(torch_ein_out, np_out))
- print("is torch_org_out == torch_ein_out ?", np.allclose(torch_ein_out, torch_org_out))
-
- # 终端打印输出
- # is np_out == torch_ein_out ? True
- # is torch_org_out == torch_ein_out ? True
- import torch
- import numpy as np
-
- a = torch.randn(2,3,5,7)
- b = torch.randn(11,13,3,17,5)
- # p = 2, q = 3, r = 5, s = 7
- # t = 11, u = 13, v = 17, r = 5
- torch_ein_out = torch.einsum('pqrs,tuqvr->pstuv', [a, b]).numpy()
- torch_org_out = torch.tensordot(a, b, dims=([1, 2], [2, 4])).numpy()
-
- np_a = a.numpy()
- np_b = b.numpy()
- # 循环展开实现
- np_out = np.empty((2, 7, 11, 13, 17), dtype=np.float32)
- # 自由索引外循环
- # 这里就是 p,s,t,u和v
- for p in range(0, 2):
- for s in range(0, 7):
- for t in range(0, 11):
- for u in range(0, 13):
- for v in range(0, 17):
- # 求和索引内循环
- # 这里是 q和r
- sum_result = 0
- for q in range(0, 3):
- for r in range(0, 5):
- sum_result += np_a[p, q, r, s] * np_b[t, u, q, v, r]
- np_out[p, s, t, u, v] = sum_result
-
- print("is np_out == torch_ein_out ?", np.allclose(torch_ein_out, np_out, atol=1e-6))
- print("is torch_ein_out == torch_org_out ?", np.allclose(torch_ein_out, torch_org_out, atol=1e-6))
-
- # 终端打印输出
- # is np_out == torch_ein_out ? True
- # is torch_ein_out == torch_org_out ? True
- import torch
- import numpy as np
-
- a = torch.randn(2,3)
- b = torch.randn(5,3,7)
- c = torch.randn(2,7)
- # i = 2, k = 3, j = 5, l = 7
- torch_ein_out = torch.einsum('ik,jkl,il->ij', [a, b, c]).numpy()
- m = torch.nn.Bilinear(3, 7, 5, bias=False)
- m.weight.data = b
- torch_org_out = m(a, c).detach().numpy()
-
- np_a = a.numpy()
- np_b = b.numpy()
- np_c = c.numpy()
- # 循环展开实现
- np_out = np.empty((2, 5), dtype=np.float32)
- # 自由索引外循环
- # 这里是 i 和 j
- for i in range(0, 2):
- for j in range(0, 5):
- # 求和索引内循环
- # 这里是 k 和 l
- sum_result = 0
- for k in range(0, 3):
- for l in range(0, 7):
- sum_result += np_a[i, k] * np_b[j, k, l] * np_c[i, l]
- np_out[i, j] = sum_result
-
- # print("matrix a:\n", np_a)
- # print("matrix b:\n", np_b)
- print("torch ein out: \n", torch_ein_out)
- print("torch org out: \n", torch_org_out)
- print("numpy out: \n", np_out)
- print("is np_out == torch_ein_out ?", np.allclose(torch_ein_out, np_out))
- print("is torch_org_out == torch_ein_out ?", np.allclose(torch_ein_out, torch_org_out))
-
- # 终端打印输出
- # torch ein out:
- # [[-2.9185116 0.17024004 -0.43915534 1.5860008 10.016678 ]
- # [-0.48688257 -3.5114982 -0.7543343 -0.46790922 1.4816089 ]]
- # torch org out:
- # [[-2.9185116 0.17024004 -0.43915534 1.5860008 10.016678 ]
- # [-0.48688257 -3.5114982 -0.7543343 -0.46790922 1.4816089 ]]
- # numpy out:
- # [[-2.9185114 0.17023998 -0.4391551 1.5860008 10.016678 ]
- # [-0.4868826 -3.5114982 -0.7543342 -0.4679092 1.4816089 ]]
- # is np_out == torch_ein_out ? True
- # is torch_org_out == torch_ein_out ? True
从上面的13个例子可以看出,只要确定了自由索引和求和索引,einsum 的输出计算都可以用一套比较通用的多层循来实现,外层的循环对应自由索引,内层循环对应求和索引。
Github 代码链接:
https://github.com/pytorch/pytorch/blob/53596cdb7359116e8c8ae18ffef06f2677ad1296/aten/src/ATen/native/Linear.cpp#L148
我只读懂了大概的实现思路,然后按照我自己的理解添加了注释(仅供参考):
- // 为了方便理解,我简化了大部分代码,
- // 并把对于 "..." 省略号的处理去掉了
- /**
- * 代码实现主要分为3大步:
- * 1. 解析 equation,分别得到输入和输出对应的字符串
- * 2. 补全输出和输入张量的维度,通过 permute 操作对齐输入和输出的维度
- * 3. 将维度对齐之后的输入张量相乘,然后根据求和索引累加
- */
- Tensor einsum(std::string equation, TensorList operands) {
- // ......
- // 把 equation 按照箭头分割
- // 得到箭头左边输入的部分
- const auto arrow_pos = equation.find("->");
- const auto lhs = equation.substr(0, arrow_pos);
- // 获取输入操作数个数
- const auto num_ops = operands.size();
-
- // 下面循环主要作用是解析 equation 左边输入部分,
- // 按 ',' 号分割得到每个输入张量对应的字符串,
- // 并把并把每个 char 字符转成 int, 范围 [0, 25]
- // 新建 vector 保存每个输入张量对应的字符数组
- std::vector<std::vector<int>> op_labels(num_ops);
- std::size_t curr_op = 0;
- for (auto i = decltype(lhs.length()){0}; i < lhs.length(); ++i) {
- switch (lhs[i]) {
- // ......
- case ',':
- // 遇到逗号,接下来解析下一个输入张量的字符串
- ++curr_op;
- // ......
- break;
- default:
- // ......
- // 把 char 字符转成 int
- op_labels[curr_op].push_back(lhs[i] - 'a');
- }
- }
-
- // TOTAL_LABELS = 26
- constexpr int TOTAL_LABELS = 'z' - 'a' + 1;
- std::vector<int> label_count(TOTAL_LABELS, 0);
- // 遍历所有输入操作数
- // 统计 equation 中 'a' - 'z' 每个字符的出现次数
- for(const auto i : c10::irange(num_ops)) {
- const auto labels = op_labels[i];
- for (const auto& label : labels) {
- // ......
- ++label_count[label];
- }
- // ......
- }
-
- // 创建一个 vector 用于保存 equation
- // 箭头右边输出的字符到索引的映射
- std::vector<int64_t> label_perm_index(TOTAL_LABELS, -1);
-
- int64_t perm_index = 0;
- // ......
- // 接下来解析输出字符串
- if (arrow_pos == std::string::npos) {
- // 处理用户省略了箭头的情况,
- // ......
- } else {
- // 一般情况
- // 得到箭头右边的输出
- const auto rhs = equation.substr(arrow_pos + 2);
- // 遍历输出字符串并解析
- for (auto i = decltype(rhs.length()){0}; i < rhs.length(); ++i) {
- switch (rhs[i]) {
- // ......
- default:
- // ......
- const auto label = rhs[i] - 'a';
- // ......
- // 建立字符到索引的映射,perm_index从0开始
- label_perm_index[label] = perm_index++;
- }
- }
- }
-
- // 保存原始的输出维度大小
- const int64_t out_size = perm_index;
- // 对齐输出张量的维度,使得对齐之后的维度等于
- // 自由索引加上求和索引的个数
- // 对输出补全省略掉的求和索引
- // 也就是在输入等式中出现,但是没有在输出等式中出现的字符
- for (const auto label : c10::irange(TOTAL_LABELS)) {
- if (label_count[label] > 0 && label_perm_index[label] == -1) {
- label_perm_index[label] = perm_index++;
- }
- }
-
- // 对所有输入张量,同样补齐维度至与输出维度大小相同
- // 最后对输入做 permute 操作,使得输入张量的每一维
- // 与输出张量的每一维能对上
- std::vector<Tensor> permuted_operands;
- for (const auto i: c10::irange(num_ops)) {
- // 保存输入张量最终做 permute 时候的维度映射
- std::vector<int64_t> perm_shape(perm_index, -1);
- Tensor operand = operands[i];
- // 取输入张量对应的 equation
- const auto labels = op_labels[i];
- std::size_t j = 0;
- for (const auto& label : labels) {
- // ......
- // 建立当前遍历到的输入张量字符到
- // 输出张量的字符到的映射
- // label: 当前遍历到的字符
- // label_perm_index: 保存了输出字符对应的索引
- // 所以 perm_shape 就是建立了输入张量的每一维度
- // 与输出张量维度的对应关系
- perm_shape[label_perm_index[label]] = j++;
- }
- // 如果输入张量的维度小于补全后的输出
- // 那么 perm_shape 中一定存在值为 -1 的元素
- // 那么相当于需要扩充输入张量的维度
- // 扩充的维度添加在张量的尾部
- for (int64_t& index : perm_shape) {
- if (index == -1) {
- // 在张量尾部插入维度1
- operand = operand.unsqueeze(-1);
- // 修改了perm_shape中的index,
- // 因为是引用取值
- index = j++;
- }
- }
- // 把输入张量的维度按照输出张量的维度重排,采用 permute 操作
- permuted_operands.push_back(operand.permute(perm_shape));
- }
- // ......
- Tensor result = permuted_operands[0];
- // .....
- // 计算最终结果
- for (const auto i: c10::irange(1, num_ops)) {
- Tensor operand = permuted_operands[i];
- // 新建 vector 用于保存求和索引
- std::vector<int64_t> sum_dims;
- // ......
- // 详细的代码可以阅读 PyTorch 源码
- // 这里我还没有完全理解 sumproduct_pair 的实现,
- // 里面用的是 permute + bmm,
- // 不过我觉得可以简单理解为
- // 将张量做广播乘法,再根据求和索引做累加
- result = sumproduct_pair(result, operand, sum_dims, false);
- }
- return result;
- }
下面还是用矩阵乘法来说明C++的实现思路,下图展示的是矩阵乘法的通用实现:
接下来展示C++的实现思路:
通过上面的实际例子和代码解读,可以看到 einsum 非常灵活,可以方便地实现各种常用的张量操作。希望读者通过这篇文章也可以轻松掌握 einsum 的基本用法。文中对于 PyTorch C++实现代码的解析是基于作者自己的理解,如果觉得有误或者不理解的地方欢迎讨论。
其他人都在看
欢迎下载体验OneFlow新一代开源深度学习框架:GitHub - Oneflow-Inc/oneflow: OneFlow is a performance-centered and open-source deep learning framework.
https://github.com/Oneflow-Inc/oneflow/