前几天偶然发现了一个超棒的人工智能学习网站,内容通俗易懂,讲解风趣幽默,简直让人欲罢不能。忍不住分享给大家,人工智能立刻跳转,开启你的AI学习之旅吧!
知识点:
案例解析:
- # 使用Python列表操作
- numbers = [1, 2, 3, 4, 5]
- squared = [x ** 2 for x in numbers]
- print(squared)
[1, 4, 9, 16, 25]
- def binary_search(arr, target):
- left, right = 0, len(arr) - 1
- while left <= right:
- mid = (left + right) // 2
- if arr[mid] == target:
- return mid
- elif arr[mid] < target:
- left = mid + 1
- else:
- right = mid - 1
- return -1
-
- arr = [1, 2, 3, 4, 5, 6, 7, 8, 9]
- result = binary_search(arr, 7)
- print(f"Element found at index: {result}")
Element found at index: 6
- from sklearn.datasets import make_regression
- from sklearn.linear_model import LinearRegression
- import matplotlib.pyplot as plt
-
- # 生成数据
- X, y = make_regression(n_samples=100, n_features=1, noise=10)
-
- # 训练模型
- model = LinearRegression()
- model.fit(X, y)
-
- # 预测
- predictions = model.predict(X)
-
- # 可视化
- plt.scatter(X, y, color='blue')
- plt.plot(X, predictions, color='red')
- plt.xlabel('X')
- plt.ylabel('y')
- plt.title('Linear Regression Fit')
- plt.show()
Minimum found at x = 3.0
知识点:
案例解析:
- import numpy as np
-
- # 梯度下降优化 y = (x - 3)^2 的最小值
- def gradient_descent(learning_rate=0.1, epochs=100):
- x = 0 # 初始点
- for i in range(epochs):
- gradient = 2 * (x - 3) # y = (x-3)^2 的导数
- x -= learning_rate * gradient
- return x
-
- minimum = gradient_descent()
- print(f"Minimum found at x = {minimum}")
Minimum found at x = 3.0
知识点:
案例解析:
知识点:
案例解析:
知识点:
案例解析:
知识点:
案例解析:
知识点:
案例解析:
知识点:
案例解析:
知识点:
案例解析:
- import tensorflow as tf
- from tensorflow.keras import layers, models
-
- # 加载 MNIST 数据集
- (X_train, y_train), (X_test, y_test) = tf.keras.datasets.mnist.load_data()
- X_train, X_test = X_train / 255.0, X_test / 255.0 # 归一化
-
- # 构建简单的神经网络模型
- model = models.Sequential([
- layers.Flatten(input_shape=(28, 28)),
- layers.Dense(128, activation='relu'),
- layers.Dense(10, activation='softmax')
- ])
-
- # 编译和训练模型
- model.compile(optimizer='adam',
- loss='sparse_categorical_crossentropy',
- metrics=['accuracy'])
-
- history = model.fit(X_train, y_train, epochs=5, validation_data=(X_test, y_test))
-
- # 评估模型
- test_loss, test_acc = model.evaluate(X_test, y_test)
- print(f'Test accuracy: {test_acc}')
知识点:
案例解析:
知识点:
案例解析:
知识点:
案例解析:
知识点:
案例解析:
- from tensorflow.keras import datasets, layers, models
- import matplotlib.pyplot as plt
-
- # 加载 CIFAR-10 数据集
- (X_train, y_train), (X_test, y_test) = datasets.cifar10.load_data()
- X_train, X_test = X_train / 255.0, X_test / 255.0 # 归一化
-
- # 构建 CNN 模型
- model = models.Sequential([
- layers.Conv2D(32, (3, 3), activation='relu', input_shape=(32, 32, 3)),
- layers.MaxPooling2D((2, 2)),
- layers.Conv2D(64, (3, 3), activation='relu'),
- layers.MaxPooling2D((2, 2)),
- layers.Conv2D(64, (3, 3), activation='relu'),
- layers.Flatten(),
- layers.Dense(64, activation='relu'),
- layers.Dense(10, activation='softmax')
- ])
-
- # 编译和训练模型
- model.compile(optimizer='adam',
- loss='sparse_categorical_crossentropy',
- metrics=['accuracy'])
-
- history = model.fit(X_train, y_train, epochs=10,
- validation_data=(X_test, y_test))
-
- # 可视化训练过程
- plt.plot(history.history['accuracy'], label='accuracy')
- plt.plot(history.history['val_accuracy'], label='val_accuracy')
- plt.xlabel('Epoch')
- plt.ylabel('Accuracy')
- plt.legend(loc='lower right')
- plt.show()
知识点:
案例解析:
知识点:
案例解析:
知识点:
案例解析:
知识点:
案例解析:
知识点:
案例解析:
知识点:
案例解析:
知识点:
案例解析:
- import gym
- import numpy as np
-
- env = gym.make('CartPole-v1')
- Q = np.zeros([env.observation_space.shape[0], env.action_space.n]) # Q 表
-
- # 简化的伪代码,完整实现略
- def simple_q_learning(env, Q, episodes=1000):
- for episode in range(episodes):
- state = env.reset()
- done = False
- while not done:
- action = np.argmax(Q[state]) # 选择行动
- next_state, reward, done, _ = env.step(action)
- Q[state, action] = Q[state, action] + 0.1 * (reward + np.max(Q[next_state]) - Q[state, action])
- state = next_state
-
- simple_q_learning(env, Q)
知识点:
案例解析:
知识点:
案例解析:
知识点:
案例解析:
知识点:
案例解析:
知识点:
案例解析:
- from transformers import BertTokenizer, TFBertForSequenceClassification
- import tensorflow as tf
-
- # 加载预训练的 BERT 模型
- tokenizer = BertTokenizer.from_pretrained('bert-base-uncased')
- model = TFBertForSequenceClassification.from_pretrained('bert-base-uncased')
-
- # 编码输入数据
- inputs = tokenizer("Hello, how are you?", return_tensors="tf")
- outputs = model(inputs)
- logits = outputs.logits
-
- # 获取分类结果
- predicted_class = tf.argmax(logits, axis=1).numpy()
- print(f"Predicted class: {predicted_class}")
知识点:
案例解析:
知识点:
案例解析:
知识点:
案例解析:
知识点:
案例解析:
本学习路线详细分解了人工智能学习过程中涉及的各个知识点,并通过具体案例对其进行了深入解析。学习者应从基础知识入手,逐步深入到机器学习和深度学习领域,再到高级应用、项目实践和前沿研究,持续学习和实践,不断提升自己的能力。