• K8s高可用集群二进制部署-V1.20


    一、前置知识点

    1.1 生产环境部署K8s集群的两种方式

    kubeadm

    Kubeadm是一个K8s部署工具,提供kubeadm init和kubeadm join,用于快速部署Kubernetes集群。

    二进制包

    从github下载发行版的二进制包,手动部署每个组件,组成Kubernetes集群。

    小结:Kubeadm降低部署门槛,但屏蔽了很多细节,遇到问题很难排查。如果想更容易可控,推荐使用二进制包部署Kubernetes集群,虽然手动部署麻烦点,期间可以学习很多工作原理,也利于后期维护。

    1.2准备环境

    服务器要求:

    • 建议最小硬件配置:2核CPU、2G内存、30G硬盘
    • 服务器最好可以访问外网,会有从网上拉取镜像需求,如果服务器不能上网,需要提前下载对应镜像并导入节点

    软件环境:

    软件 版本
    操作系统 CentOS7.x_x64 (mini)
    容器引擎 Docker CE 19
    Kubernetes Kubernetes v1.20

    服务器整体规划:

    角色 IP 组件
    k8s-master1 192.168.31.71 kube-apiserver,kube-controller-manager,kube-scheduler,kubelet,kube-proxy,docker,etcd, nginx,keepalived
    k8s-master2 192.168.31.74 kube-apiserver,kube-controller-manager,kube-scheduler,kubelet,kube-proxy,docker, nginx,keepalived
    k8s-node1 192.168.31.72 kubelet,kube-proxy,docker,etcd
    k8s-node2 192.168.31.73 kubelet,kube-proxy,docker,etcd
    负载均衡器IP 192.168.31.88 (VIP)

    须知:考虑到有些朋友电脑配置较低,一次性开四台机器会跑不动,所以搭建这套K8s高可用集群分两部分实施,先部署一套单Master架构(3台),再扩容为多Master架构(4台或6台),顺便再熟悉下Master扩容流程。

    单Master架构图:

    image

    单Master服务器规划:

    角色 IP 组件
    k8s-master 192.168.31.71 kube-apiserver,kube-controller-manager,kube-scheduler,etcd
    k8s-node1 192.168.31.72 kubelet,kube-proxy,docker,etcd
    k8s-node2 192.168.31.73 kubelet,kube-proxy,docker,etcd

    1.3 操作系统初始化配置

    # 关闭防火墙
    systemctl stop firewalld
    systemctl disable firewalld
    # 关闭selinux
    sed -i 's/enforcing/disabled/' /etc/selinux/config # 永久
    setenforce 0 # 临时
    # 关闭swap
    swapoff -a # 临时
    sed -ri 's/.*swap.*/#&/' /etc/fstab # 永久
    # 根据规划设置主机名
    hostnamectl set-hostname
    # 在master添加hosts
    cat >> /etc/hosts << EOF
    192.168.31.71 k8s-master1
    192.168.31.72 k8s-node1
    192.168.31.73 k8s-node2
    EOF
    # 将桥接的IPv4流量传递到iptables的链
    cat > /etc/sysctl.d/k8s.conf << EOF
    net.bridge.bridge-nf-call-ip6tables = 1
    net.bridge.bridge-nf-call-iptables = 1
    EOF
    sysctl --system # 生效
    # 时间同步
    yum install ntpdate -y
    ntpdate time.windows.com

    二、部署Etcd集群

    Etcd 是一个分布式键值存储系统,Kubernetes使用Etcd进行数据存储,所以先准备一个Etcd数据库,为解决Etcd单点故障,应采用集群方式部署,这里使用3台组建集群,可容忍1台机器故障,当然,你也可以使用5台组建集群,可容忍2台机器故障。

    节点名称 IP
    etcd-1 192.168.31.71
    etcd-2 192.168.31.72
    etcd-3 192.168.31.73

    注:为了节省机器,这里与K8s节点机器复用。也可以独立于k8s集群之外部署,只要apiserver能连接到就行。|

    2.1 准备cfssl证书生成工具

    cfssl是一个开源的证书管理工具,使用json文件生成证书,相比openssl更方便使用。

    找任意一台服务器操作,这里用Master节点。

    wget https://pkg.cfssl.org/R1.2/cfssl_linux-amd64
    wget https://pkg.cfssl.org/R1.2/cfssljson_linux-amd64
    wget https://pkg.cfssl.org/R1.2/cfssl-certinfo_linux-amd64
    chmod +x cfssl_linux-amd64 cfssljson_linux-amd64 cfssl-certinfo_linux-amd64
    mv cfssl_linux-amd64 /usr/local/bin/cfssl
    mv cfssljson_linux-amd64 /usr/local/bin/cfssljson
    mv cfssl-certinfo_linux-amd64 /usr/bin/cfssl-certinfo

    2.2 生成Etcd证书

    1. 自签证书颁发机构(CA)

    创建工作目录:

    mkdir -p ~/TLS/{etcd,k8s}
    cd ~/TLS/etcd

    自签CA:

    cat > ca-config.json << EOF
    {
    "signing": {
    "default": {
    "expiry": "87600h"
    },
    "profiles": {
    "www": {
    "expiry": "87600h",
    "usages": [
    "signing",
    "key encipherment",
    "server auth",
    "client auth"
    ]
    }
    }
    }
    }
    EOF
    cat > ca-csr.json << EOF
    {
    "CN": "etcd CA",
    "key": {
    "algo": "rsa",
    "size": 2048
    },
    "names": [
    {
    "C": "CN",
    "L": "Beijing",
    "ST": "Beijing"
    }
    ]
    }
    EOF

    生成证书:

    cfssl gencert -initca ca-csr.json | cfssljson -bare ca -

    会生成ca.pem和ca-key.pem文件。


    2. 使用自签CA签发Etcd HTTPS证书

    创建证书申请文件:

    cat > server-csr.json << EOF
    {
    "CN": "etcd",
    "hosts": [
    "192.168.31.71",
    "192.168.31.72",
    "192.168.31.73"
    ],
    "key": {
    "algo": "rsa",
    "size": 2048
    },
    "names": [
    {
    "C": "CN",
    "L": "BeiJing",
    "ST": "BeiJing"
    }
    ]
    }
    EOF

    注:上述文件hosts字段中IP为所有etcd节点的集群内部通信IP,一个都不能少!为了方便后期扩容可以多写几个预留的IP。

    生成证书:

    cfssl gencert -ca=ca.pem -ca-key=ca-key.pem -config=ca-config.json -profile=www server-csr.json | cfssljson -bare server

    会生成server.pem和server-key.pem文件。


    2.3 从Github下载二进制文件

    下载地址:https://github.com/etcd-io/etcd/releases/download/v3.4.9/etcd-v3.4.9-linux-amd64.tar.gz

    2.4 部署Etcd集群

    以下在节点1上操作,为简化操作,待会将节点1生成的所有文件拷贝到节点2和节点3.

    1. 创建工作目录并解压二进制包

    mkdir /opt/etcd/{bin,cfg,ssl} -p
    tar zxvf etcd-v3.4.9-linux-amd64.tar.gz
    mv etcd-v3.4.9-linux-amd64/{etcd,etcdctl} /opt/etcd/bin/

    2. 创建etcd配置文件

    cat > /opt/etcd/cfg/etcd.conf << EOF
    #[Member]
    ETCD_NAME="etcd-1"
    ETCD_DATA_DIR="/var/lib/etcd/default.etcd"
    ETCD_LISTEN_PEER_URLS="https://192.168.31.71:2380"
    ETCD_LISTEN_CLIENT_URLS="https://192.168.31.71:2379"
    #[Clustering]
    ETCD_INITIAL_ADVERTISE_PEER_URLS="https://192.168.31.71:2380"
    ETCD_ADVERTISE_CLIENT_URLS="https://192.168.31.71:2379"
    ETCD_INITIAL_CLUSTER="etcd-1=https://192.168.31.71:2380,etcd-2=https://192.168.31.72:2380,etcd-3=https://192.168.31.73:2380"
    ETCD_INITIAL_CLUSTER_TOKEN="etcd-cluster"
    ETCD_INITIAL_CLUSTER_STATE="new"
    EOF

    • ETCD_NAME:节点名称,集群中唯一

    • ETCD_DATA_DIR:数据目录

    • ETCD_LISTEN_PEER_URLS:集群通信监听地址

    • ETCD_LISTEN_CLIENT_URLS:客户端访问监听地址

    • ETCD_INITIAL_ADVERTISE_PEERURLS:集群通告地址

    • ETCD_ADVERTISE_CLIENT_URLS:客户端通告地址

    • ETCD_INITIAL_CLUSTER:集群节点地址

    • ETCD_INITIALCLUSTER_TOKEN:集群Token

    • ETCD_INITIALCLUSTER_STATE:加入集群的当前状态,new是新集群,existing表示加入已有集群

    3. systemd管理etcd

    cat > /usr/lib/systemd/system/etcd.service << EOF
    [Unit]
    Description=Etcd Server
    After=network.target
    After=network-online.target
    Wants=network-online.target
    [Service]
    Type=notify
    EnvironmentFile=/opt/etcd/cfg/etcd.conf
    ExecStart=/opt/etcd/bin/etcd \
    --cert-file=/opt/etcd/ssl/server.pem \
    --key-file=/opt/etcd/ssl/server-key.pem \
    --peer-cert-file=/opt/etcd/ssl/server.pem \
    --peer-key-file=/opt/etcd/ssl/server-key.pem \
    --trusted-ca-file=/opt/etcd/ssl/ca.pem \
    --peer-trusted-ca-file=/opt/etcd/ssl/ca.pem \
    --logger=zap
    Restart=on-failure
    LimitNOFILE=65536
    [Install]
    WantedBy=multi-user.target
    EOF

    4. 拷贝刚才生成的证书

    把刚才生成的证书拷贝到配置文件中的路径:

    cp ~/TLS/etcd/ca*pem ~/TLS/etcd/server*pem /opt/etcd/ssl/

    5. 启动并设置开机启动

    systemctl daemon-reload
    systemctl start etcd
    systemctl enable etcd

    6. 将上面节点1所有生成的文件拷贝到节点2和节点3

    scp -r /opt/etcd/ root@192.168.31.72:/opt/
    scp /usr/lib/systemd/system/etcd.service root@192.168.31.72:/usr/lib/systemd/system/
    scp -r /opt/etcd/ root@192.168.31.73:/opt/
    scp /usr/lib/systemd/system/etcd.service root@192.168.31.73:/usr/lib/systemd/system/

    然后在节点2和节点3分别修改etcd.conf配置文件中的节点名称和当前服务器IP:

    vi /opt/etcd/cfg/etcd.conf
    #[Member]
    ETCD_NAME="etcd-1" # 修改此处,节点2改为etcd-2,节点3改为etcd-3
    ETCD_DATA_DIR="/var/lib/etcd/default.etcd"
    ETCD_LISTEN_PEER_URLS="https://192.168.31.71:2380" # 修改此处为当前服务器IP
    ETCD_LISTEN_CLIENT_URLS="https://192.168.31.71:2379" # 修改此处为当前服务器IP
    #[Clustering]
    ETCD_INITIAL_ADVERTISE_PEER_URLS="https://192.168.31.71:2380" # 修改此处为当前服务器IP
    ETCD_ADVERTISE_CLIENT_URLS="https://192.168.31.71:2379" # 修改此处为当前服务器IP
    ETCD_INITIAL_CLUSTER="etcd-1=https://192.168.31.71:2380,etcd-2=https://192.168.31.72:2380,etcd-3=https://192.168.31.73:2380"
    ETCD_INITIAL_CLUSTER_TOKEN="etcd-cluster"
    ETCD_INITIAL_CLUSTER_STATE="new"

    最后启动etcd并设置开机启动,同上。


    7. 查看集群状态

    ETCDCTL_API=3 /opt/etcd/bin/etcdctl --cacert=/opt/etcd/ssl/ca.pem --cert=/opt/etcd/ssl/server.pem --key=/opt/etcd/ssl/server-key.pem --endpoints="https://192.168.31.71:2379,https://192.168.31.72:2379,https://192.168.31.73:2379" endpoint health --write-out=table
    +----------------------------+--------+-------------+-------+
    | ENDPOINT | HEALTH | TOOK | ERROR |
    +----------------------------+--------+-------------+-------+
    | https://192.168.31.71:2379 | true | 10.301506ms | |
    | https://192.168.31.73:2379 | true | 12.87467ms | |
    | https://192.168.31.72:2379 | true | 13.225954ms | |
    +----------------------------+--------+-------------+-------+

    如果输出上面信息,就说明集群部署成功。

    如果有问题第一步先看日志:/var/log/message 或 journalctl -u etcd


    三、安装Docker

    这里使用Docker作为容器引擎,也可以换成别的,例如containerd

    下载地址:https://download.docker.com/linux/static/stable/x86_64/docker-19.03.9.tgz

    以下在所有节点操作。这里采用二进制安装,用yum安装也一样。

    3.1 解压二进制包

    tar zxvf docker-19.03.9.tgz
    mv docker/* /usr/bin

    3.2 systemd管理docker

    cat > /usr/lib/systemd/system/docker.service << EOF
    [Unit]
    Description=Docker Application Container Engine
    Documentation=https://docs.docker.com
    After=network-online.target firewalld.service
    Wants=network-online.target
    [Service]
    Type=notify
    ExecStart=/usr/bin/dockerd
    ExecReload=/bin/kill -s HUP $MAINPID
    LimitNOFILE=infinity
    LimitNPROC=infinity
    LimitCORE=infinity
    TimeoutStartSec=0
    Delegate=yes
    KillMode=process
    Restart=on-failure
    StartLimitBurst=3
    StartLimitInterval=60s
    [Install]
    WantedBy=multi-user.target
    EOF

    3.3 创建配置文件

    mkdir /etc/docker
    cat > /etc/docker/daemon.json << EOF
    {
    "registry-mirrors": ["https://b9pmyelo.mirror.aliyuncs.com"]
    }
    EOF
    • registry-mirrors 阿里云镜像加速器

    3.4 启动并设置开机启动

    systemctl daemon-reload
    systemctl start docker
    systemctl enable docker

    四、部署Master Node

    如果你在学习中遇到问题或者文档有误可联系wsj~ 微信: XWALY-5

    4.1 生成kube-apiserver证书

    1. 自签证书颁发机构(CA)

    cd ~/TLS/k8s
    cat > ca-config.json << EOF
    {
    "signing": {
    "default": {
    "expiry": "87600h"
    },
    "profiles": {
    "kubernetes": {
    "expiry": "87600h",
    "usages": [
    "signing",
    "key encipherment",
    "server auth",
    "client auth"
    ]
    }
    }
    }
    }
    EOF
    cat > ca-csr.json << EOF
    {
    "CN": "kubernetes",
    "key": {
    "algo": "rsa",
    "size": 2048
    },
    "names": [
    {
    "C": "CN",
    "L": "Beijing",
    "ST": "Beijing",
    "O": "k8s",
    "OU": "System"
    }
    ]
    }
    EOF

    生成证书:

    cfssl gencert -initca ca-csr.json | cfssljson -bare ca -

    会生成ca.pem和ca-key.pem文件。

    2. 使用自签CA签发kube-apiserver HTTPS证书

    创建证书申请文件:

    cat > server-csr.json << EOF
    {
    "CN": "kubernetes",
    "hosts": [
    "10.0.0.1",
    "127.0.0.1",
    "192.168.31.71",
    "192.168.31.72",
    "192.168.31.73",
    "192.168.31.88",
    "kubernetes",
    "kubernetes.default",
    "kubernetes.default.svc",
    "kubernetes.default.svc.cluster",
    "kubernetes.default.svc.cluster.local"
    ],
    "key": {
    "algo": "rsa",
    "size": 2048
    },
    "names": [
    {
    "C": "CN",
    "L": "BeiJing",
    "ST": "BeiJing",
    "O": "k8s",
    "OU": "System"
    }
    ]
    }
    EOF

    注:上述文件hosts字段中IP为所有Master/LB/VIP IP,一个都不能少!为了方便后期扩容可以多写几个预留的IP。

    生成证书:

    cfssl gencert -ca=ca.pem -ca-key=ca-key.pem -config=ca-config.json -profile=kubernetes server-csr.json | cfssljson -bare server

    会生成server.pem和server-key.pem文件。

    4.2 从Github下载二进制文件

    下载地址: https://github.com/kubernetes/kubernetes/blob/master/CHANGELOG/CHANGELOG-1.20.md

    注:打开链接你会发现里面有很多包,下载一个server包就够了,包含了Master和Worker Node二进制文件。

    4.3 解压二进制包

    mkdir -p /opt/kubernetes/{bin,cfg,ssl,logs}
    tar zxvf kubernetes-server-linux-amd64.tar.gz
    cd kubernetes/server/bin
    cp kube-apiserver kube-scheduler kube-controller-manager /opt/kubernetes/bin
    cp kubectl /usr/bin/

    4.4 部署kube-apiserver

    1. 创建配置文件

    cat > /opt/kubernetes/cfg/kube-apiserver.conf << EOF
    KUBE_APISERVER_OPTS="--logtostderr=false \\
    --v=2 \\
    --log-dir=/opt/kubernetes/logs \\
    --etcd-servers=https://192.168.31.71:2379,https://192.168.31.72:2379,https://192.168.31.73:2379 \\
    --bind-address=192.168.31.71 \\
    --secure-port=6443 \\
    --advertise-address=192.168.31.71 \\
    --allow-privileged=true \\
    --service-cluster-ip-range=10.0.0.0/24 \\
    --enable-admission-plugins=NamespaceLifecycle,LimitRanger,ServiceAccount,ResourceQuota,NodeRestriction \\
    --authorization-mode=RBAC,Node \\
    --enable-bootstrap-token-auth=true \\
    --token-auth-file=/opt/kubernetes/cfg/token.csv \\
    --service-node-port-range=30000-32767 \\
    --kubelet-client-certificate=/opt/kubernetes/ssl/server.pem \\
    --kubelet-client-key=/opt/kubernetes/ssl/server-key.pem \\
    --tls-cert-file=/opt/kubernetes/ssl/server.pem \\
    --tls-private-key-file=/opt/kubernetes/ssl/server-key.pem \\
    --client-ca-file=/opt/kubernetes/ssl/ca.pem \\
    --service-account-key-file=/opt/kubernetes/ssl/ca-key.pem \\
    --service-account-issuer=api \\
    --service-account-signing-key-file=/opt/kubernetes/ssl/server-key.pem \\
    --etcd-cafile=/opt/etcd/ssl/ca.pem \\
    --etcd-certfile=/opt/etcd/ssl/server.pem \\
    --etcd-keyfile=/opt/etcd/ssl/server-key.pem \\
    --requestheader-client-ca-file=/opt/kubernetes/ssl/ca.pem \\
    --proxy-client-cert-file=/opt/kubernetes/ssl/server.pem \\
    --proxy-client-key-file=/opt/kubernetes/ssl/server-key.pem \\
    --requestheader-allowed-names=kubernetes \\
    --requestheader-extra-headers-prefix=X-Remote-Extra- \\
    --requestheader-group-headers=X-Remote-Group \\
    --requestheader-username-headers=X-Remote-User \\
    --enable-aggregator-routing=true \\
    --audit-log-maxage=30 \\
    --audit-log-maxbackup=3 \\
    --audit-log-maxsize=100 \\
    --audit-log-path=/opt/kubernetes/logs/k8s-audit.log"
    EOF

    注:上面两个\ \ 第一个是转义符,第二个是换行符,使用转义符是为了使用EOF保留换行符。

    • —logtostderr:启用日志

    • —-v:日志等级

    • —log-dir:日志目录

    • —etcd-servers:etcd集群地址

    • —bind-address:监听地址

    • —secure-port:https安全端口

    • —advertise-address:集群通告地址

    • —allow-privileged:启用授权

    • —service-cluster-ip-range:Service虚拟IP地址段

    • —enable-admission-plugins:准入控制模块

    • —authorization-mode:认证授权,启用RBAC授权和节点自管理

    • —enable-bootstrap-token-auth:启用TLS bootstrap机制

    • —token-auth-file:bootstrap token文件

    • —service-node-port-range:Service nodeport类型默认分配端口范围

    • —kubelet-client-xxx:apiserver访问kubelet客户端证书

    • —tls-xxx-file:apiserver https证书

    • 1.20版本必须加的参数:—service-account-issuer,—service-account-signing-key-file

    • —etcd-xxxfile:连接Etcd集群证书

    • —audit-log-xxx:审计日志

    • 启动聚合层相关配置:—requestheader-client-ca-file,—proxy-client-cert-file,—proxy-client-key-file,—requestheader-allowed-names,—requestheader-extra-headers-prefix,—requestheader-group-headers,—requestheader-username-headers,—enable-aggregator-routing

    2. 拷贝刚才生成的证书

    把刚才生成的证书拷贝到配置文件中的路径:

    cp ~/TLS/k8s/ca*pem ~/TLS/k8s/server*pem /opt/kubernetes/ssl/

    3. 启用 TLS Bootstrapping 机制

    TLS Bootstraping:Master apiserver启用TLS认证后,Node节点kubelet和kube-proxy要与kube-apiserver进行通信,必须使用CA签发的有效证书才可以,当Node节点很多时,这种客户端证书颁发需要大量工作,同样也会增加集群扩展复杂度。为了简化流程,Kubernetes引入了TLS bootstraping机制来自动颁发客户端证书,kubelet会以一个低权限用户自动向apiserver申请证书,kubelet的证书由apiserver动态签署。所以强烈建议在Node上使用这种方式,目前主要用于kubelet,kube-proxy还是由我们统一颁发一个证书。

    TLS bootstraping 工作流程:
    image

    创建上述配置文件中token文件:

    cat > /opt/kubernetes/cfg/token.csv << EOF
    c47ffb939f5ca36231d9e3121a252940,kubelet-bootstrap,10001,"system:node-bootstrapper"
    EOF

    格式:token,用户名,UID,用户组

    token也可自行生成替换:

    head -c 16 /dev/urandom | od -An -t x | tr -d ' '

    4. systemd管理apiserver

    cat > /usr/lib/systemd/system/kube-apiserver.service << EOF
    [Unit]
    Description=Kubernetes API Server
    Documentation=https://github.com/kubernetes/kubernetes
    [Service]
    EnvironmentFile=/opt/kubernetes/cfg/kube-apiserver.conf
    ExecStart=/opt/kubernetes/bin/kube-apiserver \$KUBE_APISERVER_OPTS
    Restart=on-failure
    [Install]
    WantedBy=multi-user.target
    EOF

    5. 启动并设置开机启动

    systemctl daemon-reload
    systemctl start kube-apiserver
    systemctl enable kube-apiserver

    4.5 部署kube-controller-manager

    1. 创建配置文件

    cat > /opt/kubernetes/cfg/kube-controller-manager.conf << EOF
    KUBE_CONTROLLER_MANAGER_OPTS="--logtostderr=false \\
    --v=2 \\
    --log-dir=/opt/kubernetes/logs \\
    --leader-elect=true \\
    --kubeconfig=/opt/kubernetes/cfg/kube-controller-manager.kubeconfig \\
    --bind-address=127.0.0.1 \\
    --allocate-node-cidrs=true \\
    --cluster-cidr=10.244.0.0/16 \\
    --service-cluster-ip-range=10.0.0.0/24 \\
    --cluster-signing-cert-file=/opt/kubernetes/ssl/ca.pem \\
    --cluster-signing-key-file=/opt/kubernetes/ssl/ca-key.pem \\
    --root-ca-file=/opt/kubernetes/ssl/ca.pem \\
    --service-account-private-key-file=/opt/kubernetes/ssl/ca-key.pem \\
    --cluster-signing-duration=87600h0m0s"
    EOF
    • —kubeconfig:连接apiserver配置文件

    • —leader-elect:当该组件启动多个时,自动选举(HA)

    • —cluster-signing-cert-file/—cluster-signing-key-file:自动为kubelet颁发证书的CA,与apiserver保持一致

    2. 生成kubeconfig文件

    生成kube-controller-manager证书:

    # 切换工作目录
    cd ~/TLS/k8s
    # 创建证书请求文件
    cat > kube-controller-manager-csr.json << EOF
    {
    "CN": "system:kube-controller-manager",
    "hosts": [],
    "key": {
    "algo": "rsa",
    "size": 2048
    },
    "names": [
    {
    "C": "CN",
    "L": "BeiJing",
    "ST": "BeiJing",
    "O": "system:masters",
    "OU": "System"
    }
    ]
    }
    EOF
    # 生成证书
    cfssl gencert -ca=ca.pem -ca-key=ca-key.pem -config=ca-config.json -profile=kubernetes kube-controller-manager-csr.json | cfssljson -bare kube-controller-manager

    生成kubeconfig文件(以下是shell命令,直接在终端执行):

    KUBE_CONFIG="/opt/kubernetes/cfg/kube-controller-manager.kubeconfig"
    KUBE_APISERVER="https://192.168.31.71:6443"
    kubectl config set-cluster kubernetes \
    --certificate-authority=/opt/kubernetes/ssl/ca.pem \
    --embed-certs=true \
    --server=${KUBE_APISERVER} \
    --kubeconfig=${KUBE_CONFIG}
    kubectl config set-credentials kube-controller-manager \
    --client-certificate=./kube-controller-manager.pem \
    --client-key=./kube-controller-manager-key.pem \
    --embed-certs=true \
    --kubeconfig=${KUBE_CONFIG}
    kubectl config set-context default \
    --cluster=kubernetes \
    --user=kube-controller-manager \
    --kubeconfig=${KUBE_CONFIG}
    kubectl config use-context default --kubeconfig=${KUBE_CONFIG}

    3. systemd管理controller-manager

    cat > /usr/lib/systemd/system/kube-controller-manager.service << EOF
    [Unit]
    Description=Kubernetes Controller Manager
    Documentation=https://github.com/kubernetes/kubernetes
    [Service]
    EnvironmentFile=/opt/kubernetes/cfg/kube-controller-manager.conf
    ExecStart=/opt/kubernetes/bin/kube-controller-manager \$KUBE_CONTROLLER_MANAGER_OPTS
    Restart=on-failure
    [Install]
    WantedBy=multi-user.target
    EOF

    4. 启动并设置开机启动

    systemctl daemon-reload
    systemctl start kube-controller-manager
    systemctl enable kube-controller-manager

    4.6 部署kube-scheduler

    1. 创建配置文件

    cat > /opt/kubernetes/cfg/kube-scheduler.conf << EOF
    KUBE_SCHEDULER_OPTS="--logtostderr=false \\
    --v=2 \\
    --log-dir=/opt/kubernetes/logs \\
    --leader-elect \\
    --kubeconfig=/opt/kubernetes/cfg/kube-scheduler.kubeconfig \\
    --bind-address=127.0.0.1"
    EOF
    • —kubeconfig:连接apiserver配置文件

    • —leader-elect:当该组件启动多个时,自动选举(HA)

    2. 生成kubeconfig文件

    生成kube-scheduler证书:

    # 切换工作目录
    cd ~/TLS/k8s
    # 创建证书请求文件
    cat > kube-scheduler-csr.json << EOF
    {
    "CN": "system:kube-scheduler",
    "hosts": [],
    "key": {
    "algo": "rsa",
    "size": 2048
    },
    "names": [
    {
    "C": "CN",
    "L": "BeiJing",
    "ST": "BeiJing",
    "O": "system:masters",
    "OU": "System"
    }
    ]
    }
    EOF
    # 生成证书
    cfssl gencert -ca=ca.pem -ca-key=ca-key.pem -config=ca-config.json -profile=kubernetes kube-scheduler-csr.json | cfssljson -bare kube-scheduler

    生成kubeconfig文件(以下是shell命令,直接在终端执行):

    KUBE_CONFIG="/opt/kubernetes/cfg/kube-scheduler.kubeconfig"
    KUBE_APISERVER="https://192.168.31.71:6443"
    kubectl config set-cluster kubernetes \
    --certificate-authority=/opt/kubernetes/ssl/ca.pem \
    --embed-certs=true \
    --server=${KUBE_APISERVER} \
    --kubeconfig=${KUBE_CONFIG}
    kubectl config set-credentials kube-scheduler \
    --client-certificate=./kube-scheduler.pem \
    --client-key=./kube-scheduler-key.pem \
    --embed-certs=true \
    --kubeconfig=${KUBE_CONFIG}
    kubectl config set-context default \
    --cluster=kubernetes \
    --user=kube-scheduler \
    --kubeconfig=${KUBE_CONFIG}
    kubectl config use-context default --kubeconfig=${KUBE_CONFIG}

    3. systemd管理scheduler

    cat > /usr/lib/systemd/system/kube-scheduler.service << EOF
    [Unit]
    Description=Kubernetes Scheduler
    Documentation=https://github.com/kubernetes/kubernetes
    [Service]
    EnvironmentFile=/opt/kubernetes/cfg/kube-scheduler.conf
    ExecStart=/opt/kubernetes/bin/kube-scheduler \$KUBE_SCHEDULER_OPTS
    Restart=on-failure
    [Install]
    WantedBy=multi-user.target
    EOF

    4. 启动并设置开机启动

    systemctl daemon-reload
    systemctl start kube-scheduler
    systemctl enable kube-scheduler
    5. 查看集群状态

    生成kubectl连接集群的证书:

    cat > admin-csr.json <
    {
    "CN": "admin",
    "hosts": [],
    "key": {
    "algo": "rsa",
    "size": 2048
    },
    "names": [
    {
    "C": "CN",
    "L": "BeiJing",
    "ST": "BeiJing",
    "O": "system:masters",
    "OU": "System"
    }
    ]
    }
    EOF
    cfssl gencert -ca=ca.pem -ca-key=ca-key.pem -config=ca-config.json -profile=kubernetes admin-csr.json | cfssljson -bare admin

    生成kubeconfig文件:

    mkdir /root/.kube
    KUBE_CONFIG="/root/.kube/config"
    KUBE_APISERVER="https://192.168.31.71:6443"
    kubectl config set-cluster kubernetes \
    --certificate-authority=/opt/kubernetes/ssl/ca.pem \
    --embed-certs=true \
    --server=${KUBE_APISERVER} \
    --kubeconfig=${KUBE_CONFIG}
    kubectl config set-credentials cluster-admin \
    --client-certificate=./admin.pem \
    --client-key=./admin-key.pem \
    --embed-certs=true \
    --kubeconfig=${KUBE_CONFIG}
    kubectl config set-context default \
    --cluster=kubernetes \
    --user=cluster-admin \
    --kubeconfig=${KUBE_CONFIG}
    kubectl config use-context default --kubeconfig=${KUBE_CONFIG}

    通过kubectl工具查看当前集群组件状态:

    kubectl get cs
    NAME STATUS MESSAGE ERROR
    scheduler Healthy ok
    controller-manager Healthy ok
    etcd-2 Healthy {"health":"true"}
    etcd-1 Healthy {"health":"true"}
    etcd-0 Healthy {"health":"true"}

    如上输出说明Master节点组件运行正常。

    6. 授权kubelet-bootstrap用户允许请求证书

    kubectl create clusterrolebinding kubelet-bootstrap \
    --clusterrole=system:node-bootstrapper \
    --user=kubelet-bootstrap

    五、部署Worker Node

    如果你在学习中遇到问题或者文档有误可联系阿良~ 微信: xyz12366699

    下面还是在Master Node上操作,即同时作为Worker Node

    5.1 创建工作目录并拷贝二进制文件

    在所有worker node创建工作目录:

    mkdir -p /opt/kubernetes/{bin,cfg,ssl,logs}

    从master节点拷贝:

    cd kubernetes/server/bin
    cp kubelet kube-proxy /opt/kubernetes/bin # 本地拷贝

    5.2 部署kubelet

    1. 创建配置文件

    cat > /opt/kubernetes/cfg/kubelet.conf << EOF
    KUBELET_OPTS="--logtostderr=false \\
    --v=2 \\
    --log-dir=/opt/kubernetes/logs \\
    --hostname-override=k8s-master1 \\
    --network-plugin=cni \\
    --kubeconfig=/opt/kubernetes/cfg/kubelet.kubeconfig \\
    --bootstrap-kubeconfig=/opt/kubernetes/cfg/bootstrap.kubeconfig \\
    --config=/opt/kubernetes/cfg/kubelet-config.yml \\
    --cert-dir=/opt/kubernetes/ssl \\
    --pod-infra-container-image=lizhenliang/pause-amd64:3.0"
    EOF
    • —hostname-override:显示名称,集群中唯一

    • —network-plugin:启用CNI

    • —kubeconfig:空路径,会自动生成,后面用于连接apiserver

    • —bootstrap-kubeconfig:首次启动向apiserver申请证书

    • —config:配置参数文件

    • —cert-dir:kubelet证书生成目录

    • —pod-infra-container-image:管理Pod网络容器的镜像

    2. 配置参数文件

    cat > /opt/kubernetes/cfg/kubelet-config.yml << EOF
    kind: KubeletConfiguration
    apiVersion: kubelet.config.k8s.io/v1beta1
    address: 0.0.0.0
    port: 10250
    readOnlyPort: 10255
    cgroupDriver: cgroupfs
    clusterDNS:
    - 10.0.0.2
    clusterDomain: cluster.local
    failSwapOn: false
    authentication:
    anonymous:
    enabled: false
    webhook:
    cacheTTL: 2m0s
    enabled: true
    x509:
    clientCAFile: /opt/kubernetes/ssl/ca.pem
    authorization:
    mode: Webhook
    webhook:
    cacheAuthorizedTTL: 5m0s
    cacheUnauthorizedTTL: 30s
    evictionHard:
    imagefs.available: 15%
    memory.available: 100Mi
    nodefs.available: 10%
    nodefs.inodesFree: 5%
    maxOpenFiles: 1000000
    maxPods: 110
    EOF

    3. 生成kubelet初次加入集群引导kubeconfig文件

    KUBE_CONFIG="/opt/kubernetes/cfg/bootstrap.kubeconfig"
    KUBE_APISERVER="https://192.168.31.71:6443" # apiserver IP:PORT
    TOKEN="c47ffb939f5ca36231d9e3121a252940" # 与token.csv里保持一致
    # 生成 kubelet bootstrap kubeconfig 配置文件
    kubectl config set-cluster kubernetes \
    --certificate-authority=/opt/kubernetes/ssl/ca.pem \
    --embed-certs=true \
    --server=${KUBE_APISERVER} \
    --kubeconfig=${KUBE_CONFIG}
    kubectl config set-credentials "kubelet-bootstrap" \
    --token=${TOKEN} \
    --kubeconfig=${KUBE_CONFIG}
    kubectl config set-context default \
    --cluster=kubernetes \
    --user="kubelet-bootstrap" \
    --kubeconfig=${KUBE_CONFIG}
    kubectl config use-context default --kubeconfig=${KUBE_CONFIG}

    4. systemd管理kubelet

    cat > /usr/lib/systemd/system/kubelet.service << EOF
    [Unit]
    Description=Kubernetes Kubelet
    After=docker.service
    [Service]
    EnvironmentFile=/opt/kubernetes/cfg/kubelet.conf
    ExecStart=/opt/kubernetes/bin/kubelet \$KUBELET_OPTS
    Restart=on-failure
    LimitNOFILE=65536
    [Install]
    WantedBy=multi-user.target
    EOF

    5. 启动并设置开机启动

    systemctl daemon-reload
    systemctl start kubelet
    systemctl enable kubelet

    5.3 批准kubelet证书申请并加入集群

    # 查看kubelet证书请求
    kubectl get csr
    NAME AGE SIGNERNAME REQUESTOR CONDITION
    node-csr-uCEGPOIiDdlLODKts8J658HrFq9CZ--K6M4G7bjhk8A 6m3s kubernetes.io/kube-apiserver-client-kubelet kubelet-bootstrap Pending
    # 批准申请
    kubectl certificate approve node-csr-uCEGPOIiDdlLODKts8J658HrFq9CZ--K6M4G7bjhk8A
    # 查看节点
    kubectl get node
    NAME STATUS ROLES AGE VERSION
    k8s-master1 NotReady <none> 7s v1.18.3

    注:由于网络插件还没有部署,节点会没有准备就绪 NotReady

    5.4 部署kube-proxy

    1. 创建配置文件

    cat > /opt/kubernetes/cfg/kube-proxy.conf << EOF
    KUBE_PROXY_OPTS="--logtostderr=false \\
    --v=2 \\
    --log-dir=/opt/kubernetes/logs \\
    --config=/opt/kubernetes/cfg/kube-proxy-config.yml"
    EOF

    2. 配置参数文件

    cat > /opt/kubernetes/cfg/kube-proxy-config.yml << EOF
    kind: KubeProxyConfiguration
    apiVersion: kubeproxy.config.k8s.io/v1alpha1
    bindAddress: 0.0.0.0
    metricsBindAddress: 0.0.0.0:10249
    clientConnection:
    kubeconfig: /opt/kubernetes/cfg/kube-proxy.kubeconfig
    hostnameOverride: k8s-master1
    clusterCIDR: 10.0.0.0/24
    EOF

    3. 生成kube-proxy.kubeconfig文件

    生成kube-proxy证书:

    # 切换工作目录
    cd ~/TLS/k8s
    # 创建证书请求文件
    cat > kube-proxy-csr.json << EOF
    {
    "CN": "system:kube-proxy",
    "hosts": [],
    "key": {
    "algo": "rsa",
    "size": 2048
    },
    "names": [
    {
    "C": "CN",
    "L": "BeiJing",
    "ST": "BeiJing",
    "O": "k8s",
    "OU": "System"
    }
    ]
    }
    EOF
    # 生成证书
    cfssl gencert -ca=ca.pem -ca-key=ca-key.pem -config=ca-config.json -profile=kubernetes kube-proxy-csr.json | cfssljson -bare kube-proxy
    生成kubeconfig文件:
    KUBE_CONFIG="/opt/kubernetes/cfg/kube-proxy.kubeconfig"
    KUBE_APISERVER="https://192.168.31.71:6443"
    kubectl config set-cluster kubernetes \
    --certificate-authority=/opt/kubernetes/ssl/ca.pem \
    --embed-certs=true \
    --server=${KUBE_APISERVER} \
    --kubeconfig=${KUBE_CONFIG}
    kubectl config set-credentials kube-proxy \
    --client-certificate=./kube-proxy.pem \
    --client-key=./kube-proxy-key.pem \
    --embed-certs=true \
    --kubeconfig=${KUBE_CONFIG}
    kubectl config set-context default \
    --cluster=kubernetes \
    --user=kube-proxy \
    --kubeconfig=${KUBE_CONFIG}
    kubectl config use-context default --kubeconfig=${KUBE_CONFIG}

    4. systemd管理kube-proxy

    cat > /usr/lib/systemd/system/kube-proxy.service << EOF
    [Unit]
    Description=Kubernetes Proxy
    After=network.target
    [Service]
    EnvironmentFile=/opt/kubernetes/cfg/kube-proxy.conf
    ExecStart=/opt/kubernetes/bin/kube-proxy \$KUBE_PROXY_OPTS
    Restart=on-failure
    LimitNOFILE=65536
    [Install]
    WantedBy=multi-user.target
    EOF

    5. 启动并设置开机启动

    systemctl daemon-reload
    systemctl start kube-proxy
    systemctl enable kube-proxy

    5.5 部署网络组件

    Calico是一个纯三层的数据中心网络方案,是目前Kubernetes主流的网络方案。

    部署Calico:

    kubectl apply -f calico.yaml
    kubectl get pods -n kube-system

    等Calico Pod都Running,节点也会准备就绪:

    kubectl get node
    NAME STATUS ROLES AGE VERSION
    k8s-master Ready <none> 37m v1.20.4

    5.6 授权apiserver访问kubelet

    应用场景:例如kubectl logs

    cat > apiserver-to-kubelet-rbac.yaml << EOF
    apiVersion: rbac.authorization.k8s.io/v1
    kind: ClusterRole
    metadata:
    annotations:
    rbac.authorization.kubernetes.io/autoupdate: "true"
    labels:
    kubernetes.io/bootstrapping: rbac-defaults
    name: system:kube-apiserver-to-kubelet
    rules:
    - apiGroups:
    - ""
    resources:
    - nodes/proxy
    - nodes/stats
    - nodes/log
    - nodes/spec
    - nodes/metrics
    - pods/log
    verbs:
    - "*"
    ---
    apiVersion: rbac.authorization.k8s.io/v1
    kind: ClusterRoleBinding
    metadata:
    name: system:kube-apiserver
    namespace: ""
    roleRef:
    apiGroup: rbac.authorization.k8s.io
    kind: ClusterRole
    name: system:kube-apiserver-to-kubelet
    subjects:
    - apiGroup: rbac.authorization.k8s.io
    kind: User
    name: kubernetes
    EOF
    kubectl apply -f apiserver-to-kubelet-rbac.yaml

    5.7 新增加Worker Node

    1. 拷贝已部署好的Node相关文件到新节点

    在Master节点将Worker Node涉及文件拷贝到新节点192.168.31.72/73

    scp -r /opt/kubernetes root@192.168.31.72:/opt/
    scp -r /usr/lib/systemd/system/{kubelet,kube-proxy}.service root@192.168.31.72:/usr/lib/systemd/system
    scp /opt/kubernetes/ssl/ca.pem root@192.168.31.72:/opt/kubernetes/ssl

    2. 删除kubelet证书和kubeconfig文件

    rm -f /opt/kubernetes/cfg/kubelet.kubeconfig
    rm -f /opt/kubernetes/ssl/kubelet*

    注:这几个文件是证书申请审批后自动生成的,每个Node不同,必须删除

    3. 修改主机名

    vi /opt/kubernetes/cfg/kubelet.conf
    --hostname-override=k8s-node1
    vi /opt/kubernetes/cfg/kube-proxy-config.yml
    hostnameOverride: k8s-node1

    4. 启动并设置开机启动

    systemctl daemon-reload
    systemctl start kubelet kube-proxy
    systemctl enable kubelet kube-proxy

    5. 在Master上批准新Node kubelet证书申请

    # 查看证书请求
    kubectl get csr
    NAME AGE SIGNERNAME REQUESTOR CONDITION
    node-csr-4zTjsaVSrhuyhIGqsefxzVoZDCNKei-aE2jyTP81Uro 89s kubernetes.io/kube-apiserver-client-kubelet kubelet-bootstrap Pending
    # 授权请求
    kubectl certificate approve node-csr-4zTjsaVSrhuyhIGqsefxzVoZDCNKei-aE2jyTP81Uro

    6. 查看Node状态

    kubectl get node
    NAME STATUS ROLES AGE VERSION
    k8s-master1 Ready <none> 47m v1.20.4
    k8s-node1 Ready <none> 6m49s v1.20.4

    Node2(192.168.31.73 )节点同上。记得修改主机名!

    六、部署Dashboard和CoreDNS

    6.1 部署Dashboard

    kubectl apply -f kubernetes-dashboard.yaml
    # 查看部署
    kubectl get pods,svc -n kubernetes-dashboard

    访问地址:https://NodeIP:30001

    创建service account并绑定默认cluster-admin管理员集群角色:

    kubectl create serviceaccount dashboard-admin -n kube-system
    kubectl create clusterrolebinding dashboard-admin --clusterrole=cluster-admin --serviceaccount=kube-system:dashboard-admin
    kubectl describe secrets -n kube-system $(kubectl -n kube-system get secret | awk '/dashboard-admin/{print $1}')

    使用输出的token登录Dashboard。

    image



    image

    6.2 部署CoreDNS

    CoreDNS用于集群内部Service名称解析。

    kubectl apply -f coredns.yaml
    kubectl get pods -n kube-system
    NAME READY STATUS RESTARTS AGE
    coredns-5ffbfd976d-j6shb 1/1 Running 0 32s

    DNS解析测试:

    kubectl run -it --rm dns-test --image=busybox:1.28.4 sh
    If you don't see a command prompt, try pressing enter.
    / # nslookup kubernetes
    Server: 10.0.0.2
    Address 1: 10.0.0.2 kube-dns.kube-system.svc.cluster.local
    Name: kubernetes
    Address 1: 10.0.0.1 kubernetes.default.svc.cluster.local

    解析没问题。

    至此一个单Master集群就搭建完成了!这个环境就足以满足学习实验了,如果你的服务器配置较高,可继续扩容多Master集群!

    七、扩容多Master(高可用架构)

    Kubernetes作为容器集群系统,通过健康检查+重启策略实现了Pod故障自我修复能力,通过调度算法实现将Pod分布式部署,并保持预期副本数,根据Node失效状态自动在其他Node拉起Pod,实现了应用层的高可用性。

    针对Kubernetes集群,高可用性还应包含以下两个层面的考虑:Etcd数据库的高可用性和Kubernetes Master组件的高可用性。 而Etcd我们已经采用3个节点组建集群实现高可用,本节将对Master节点高可用进行说明和实施。

    Master节点扮演着总控中心的角色,通过不断与工作节点上的Kubelet和kube-proxy进行通信来维护整个集群的健康工作状态。如果Master节点故障,将无法使用kubectl工具或者API做任何集群管理。

    Master节点主要有三个服务kube-apiserver、kube-controller-manager和kube-scheduler,其中kube-controller-manager和kube-scheduler组件自身通过选择机制已经实现了高可用,所以Master高可用主要针对kube-apiserver组件,而该组件是以HTTP API提供服务,因此对他高可用与Web服务器类似,增加负载均衡器对其负载均衡即可,并且可水平扩容。

    多Master架构图:

    image

    7.1 部署Master2 Node

    现在需要再增加一台新服务器,作为Master2 Node,IP是192.168.31.74。

    为了节省资源你也可以将之前部署好的Worker Node1复用为Master2 Node角色(即部署Master组件)

    Master2 与已部署的Master1所有操作一致。所以我们只需将Master1所有K8s文件拷贝过来,再修改下服务器IP和主机名启动即可。

    1. 安装Docker

    scp /usr/bin/docker* root@192.168.31.74:/usr/bin
    scp /usr/bin/runc root@192.168.31.74:/usr/bin
    scp /usr/bin/containerd* root@192.168.31.74:/usr/bin
    scp /usr/lib/systemd/system/docker.service root@192.168.31.74:/usr/lib/systemd/system
    scp -r /etc/docker root@192.168.31.74:/etc
    # 在Master2启动Docker
    systemctl daemon-reload
    systemctl start docker
    systemctl enable docker

    2. 创建etcd证书目录

    在Master2创建etcd证书目录:

    mkdir -p /opt/etcd/ssl

    3. 拷贝文件(Master1操作)

    拷贝Master1上所有K8s文件和etcd证书到Master2:

    scp -r /opt/kubernetes root@192.168.31.74:/opt
    scp -r /opt/etcd/ssl root@192.168.31.74:/opt/etcd
    scp /usr/lib/systemd/system/kube* root@192.168.31.74:/usr/lib/systemd/system
    scp /usr/bin/kubectl root@192.168.31.74:/usr/bin
    scp -r ~/.kube root@192.168.31.74:~

    4. 删除证书文件

    删除kubelet证书和kubeconfig文件:

    rm -f /opt/kubernetes/cfg/kubelet.kubeconfig
    rm -f /opt/kubernetes/ssl/kubelet*

    5. 修改配置文件IP和主机名

    修改apiserver、kubelet和kube-proxy配置文件为本地IP:

    vi /opt/kubernetes/cfg/kube-apiserver.conf
    ...
    --bind-address=192.168.31.74 \
    --advertise-address=192.168.31.74 \
    ...
    vi /opt/kubernetes/cfg/kubelet.conf
    --hostname-override=k8s-master2
    vi /opt/kubernetes/cfg/kube-proxy-config.yml
    hostnameOverride: k8s-master2

    6. 启动设置开机启动

    systemctl daemon-reload
    systemctl start kube-apiserver kube-controller-manager kube-scheduler kubelet kube-proxy
    systemctl enable kube-apiserver kube-controller-manager kube-scheduler kubelet kube-proxy

    7. 查看集群状态

    修改连接master为本机IP

    vi ~/.kube/config
    ...
    server: https://192.168.31.74:6443
    kubectl get cs
    NAME STATUS MESSAGE ERROR
    scheduler Healthy ok
    controller-manager Healthy ok
    etcd-1 Healthy {"health":"true"}
    etcd-2 Healthy {"health":"true"}
    etcd-0 Healthy {"health":"true"}

    8. 批准kubelet证书申请

    # 查看证书请求
    kubectl get csr
    NAME AGE SIGNERNAME REQUESTOR CONDITION
    node-csr-JYNknakEa_YpHz797oKaN-ZTk43nD51Zc9CJkBLcASU 85m kubernetes.io/kube-apiserver-client-kubelet kubelet-bootstrap Pending
    # 授权请求
    kubectl certificate approve node-csr-JYNknakEa_YpHz797oKaN-ZTk43nD51Zc9CJkBLcASU
    # 查看Node
    kubectl get node
    NAME STATUS ROLES AGE VERSION
    k8s-master1 Ready <none> 34h v1.20.4
    k8s-master2 Ready <none> 2m v1.20.4
    k8s-node1 Ready <none> 33h v1.20.4
    k8s-node2 Ready <none> 33h v1.20.4

    如果你在学习中遇到问题或者文档有误可联系wsj~ 微信: XWALY-5

    7.2 部署Nginx+Keepalived高可用负载均衡器

    kube-apiserver高可用架构图:

    image


    • Nginx是一个主流Web服务和反向代理服务器,这里用四层实现对apiserver实现负载均衡。

    • Keepalived是一个主流高可用软件,基于VIP绑定实现服务器双机热备,在上述拓扑中,Keepalived主要根据Nginx运行状态判断是否需要故障转移(漂移VIP),例如当Nginx主节点挂掉,VIP会自动绑定在Nginx备节点,从而保证VIP一直可用,实现Nginx高可用。

    注1:为了节省机器,这里与K8s Master节点机器复用。也可以独立于k8s集群之外部署,只要nginx与apiserver能通信就行。

    注2:如果你是在公有云上,一般都不支持keepalived,那么你可以直接用它们的负载均衡器产品,直接负载均衡多台Master kube-apiserver,架构与上面一样。

    在两台Master节点操作。

    1. 安装软件包(主/备)

    yum install epel-release -y
    yum install nginx keepalived -y

    2. Nginx配置文件(主/备一样)

    cat > /etc/nginx/nginx.conf << "EOF"
    user nginx;
    worker_processes auto;
    error_log /var/log/nginx/error.log;
    pid /run/nginx.pid;
    include /usr/share/nginx/modules/*.conf;
    events {
    worker_connections 1024;
    }
    # 四层负载均衡,为两台Master apiserver组件提供负载均衡
    stream {
    log_format main '$remote_addr $upstream_addr - [$time_local] $status $upstream_bytes_sent';
    access_log /var/log/nginx/k8s-access.log main;
    upstream k8s-apiserver {
    server 192.168.31.71:6443; # Master1 APISERVER IP:PORT
    server 192.168.31.72:6443; # Master2 APISERVER IP:PORT
    }
    server {
    listen 16443; # 由于nginx与master节点复用,这个监听端口不能是6443,否则会冲突
    proxy_pass k8s-apiserver;
    }
    }
    http {
    log_format main '$remote_addr - $remote_user [$time_local] "$request" '
    '$status $body_bytes_sent "$http_referer" '
    '"$http_user_agent" "$http_x_forwarded_for"';
    access_log /var/log/nginx/access.log main;
    sendfile on;
    tcp_nopush on;
    tcp_nodelay on;
    keepalive_timeout 65;
    types_hash_max_size 2048;
    include /etc/nginx/mime.types;
    default_type application/octet-stream;
    server {
    listen 80 default_server;
    server_name _;
    location / {
    }
    }
    }
    EOF

    3. keepalived配置文件(Nginx Master)

    cat > /etc/keepalived/keepalived.conf << EOF
    global_defs {
    notification_email {
    acassen@firewall.loc
    failover@firewall.loc
    sysadmin@firewall.loc
    }
    notification_email_from Alexandre.Cassen@firewall.loc
    smtp_server 127.0.0.1
    smtp_connect_timeout 30
    router_id NGINX_MASTER
    }
    vrrp_script check_nginx {
    script "/etc/keepalived/check_nginx.sh"
    }
    vrrp_instance VI_1 {
    state MASTER
    interface ens33 # 修改为实际网卡名
    virtual_router_id 51 # VRRP 路由 ID实例,每个实例是唯一的
    priority 100 # 优先级,备服务器设置 90
    advert_int 1 # 指定VRRP 心跳包通告间隔时间,默认1秒
    authentication {
    auth_type PASS
    auth_pass 1111
    }
    # 虚拟IP
    virtual_ipaddress {
    192.168.31.88/24
    }
    track_script {
    check_nginx
    }
    }
    EOF
    • vrrp_script:指定检查nginx工作状态脚本(根据nginx状态判断是否故障转移)

    • virtual_ipaddress:虚拟IP(VIP)

    准备上述配置文件中检查nginx运行状态的脚本:

    cat > /etc/keepalived/check_nginx.sh << "EOF"
    #!/bin/bash
    count=$(ss -antp |grep 16443 |egrep -cv "grep|$$")
    if [ "$count" -eq 0 ];then
    exit 1
    else
    exit 0
    fi
    EOF
    chmod +x /etc/keepalived/check_nginx.sh

    4. keepalived配置文件(Nginx Backup)

    cat > /etc/keepalived/keepalived.conf << EOF
    global_defs {
    notification_email {
    acassen@firewall.loc
    failover@firewall.loc
    sysadmin@firewall.loc
    }
    notification_email_from Alexandre.Cassen@firewall.loc
    smtp_server 127.0.0.1
    smtp_connect_timeout 30
    router_id NGINX_BACKUP
    }
    vrrp_script check_nginx {
    script "/etc/keepalived/check_nginx.sh"
    }
    vrrp_instance VI_1 {
    state BACKUP
    interface ens33
    virtual_router_id 51 # VRRP 路由 ID实例,每个实例是唯一的
    priority 90
    advert_int 1
    authentication {
    auth_type PASS
    auth_pass 1111
    }
    virtual_ipaddress {
    192.168.31.88/24
    }
    track_script {
    check_nginx
    }
    }
    EOF

    准备上述配置文件中检查nginx运行状态的脚本:

    cat > /etc/keepalived/check_nginx.sh << "EOF"
    #!/bin/bash
    count=$(ss -antp |grep 16443 |egrep -cv "grep|$$")
    if [ "$count" -eq 0 ];then
    exit 1
    else
    exit 0
    fi
    EOF
    chmod +x /etc/keepalived/check_nginx.sh

    注:keepalived根据脚本返回状态码(0为工作正常,非0不正常)判断是否故障转移。

    5. 启动并设置开机启动

    systemctl daemon-reload
    systemctl start nginx keepalived
    systemctl enable nginx keepalived

    6. 查看keepalived工作状态

    ip addr
    1: lo: <LOOPBACK,UP,LOWER_UP> mtu 65536 qdisc noqueue state UNKNOWN group default qlen 1000
    link/loopback 00:00:00:00:00:00 brd 00:00:00:00:00:00
    inet 127.0.0.1/8 scope host lo
    valid_lft forever preferred_lft forever
    inet6 ::1/128 scope host
    valid_lft forever preferred_lft forever
    2: ens33: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1500 qdisc pfifo_fast state UP group default qlen 1000
    link/ether 00:0c:29:04:f7:2c brd ff:ff:ff:ff:ff:ff
    inet 192.168.31.80/24 brd 192.168.31.255 scope global noprefixroute ens33
    valid_lft forever preferred_lft forever
    inet 192.168.31.88/24 scope global secondary ens33
    valid_lft forever preferred_lft forever
    inet6 fe80::20c:29ff:fe04:f72c/64 scope link
    valid_lft forever preferred_lft forever

    可以看到,在ens33网卡绑定了192.168.31.88 虚拟IP,说明工作正常。

    7. Nginx+Keepalived高可用测试

    关闭主节点Nginx,测试VIP是否漂移到备节点服务器。

    在Nginx Master执行 pkill nginx;
    在Nginx Backup,ip addr命令查看已成功绑定VIP。

    8. 访问负载均衡器测试

    找K8s集群中任意一个节点,使用curl查看K8s版本测试,使用VIP访问:

    curl -k https://192.168.31.88:16443/version
    {
    "major": "1",
    "minor": "20",
    "gitVersion": "v1.20.4",
    "gitCommit": "e87da0bd6e03ec3fea7933c4b5263d151aafd07c",
    "gitTreeState": "clean",
    "buildDate": "2021-02-18T16:03:00Z",
    "goVersion": "go1.15.8",
    "compiler": "gc",
    "platform": "linux/amd64"
    }

    可以正确获取到K8s版本信息,说明负载均衡器搭建正常。该请求数据流程:curl -> vip(nginx) -> apiserver

    通过查看Nginx日志也可以看到转发apiserver IP
    tail /var/log/nginx/k8s-access.log -f
    192.168.31.71 192.168.31.71:6443 - [02/Apr/2021:19:17:57 +0800] 200 423
    192.168.31.71 192.168.31.72:6443 - [02/Apr/2021:19:18:50 +0800] 200 423

    到此还没结束,还有下面最关键的一步。

    7.3 修改所有Worker Node连接LB VIP

    试想下,虽然我们增加了Master2 Node和负载均衡器,但是我们是从单Master架构扩容的,也就是说目前所有的Worker Node组件连接都还是Master1 Node,如果不改为连接VIP走负载均衡器,那么Master还是单点故障。

    因此接下来就是要改所有Worker Node(kubectl get node命令查看到的节点)组件配置文件,由原来192.168.31.71修改为192.168.31.88(VIP)。

    在所有Worker Node执行:

    sed -i 's#192.168.31.71:6443#192.168.31.88:16443#' /opt/kubernetes/cfg/*
    systemctl restart kubelet kube-proxy

    检查节点状态:

    kubectl get node
    NAME STATUS ROLES AGE VERSION
    k8s-master1 Ready <none> 32d v1.20.4
    k8s-master2 Ready <none> 10m v1.20.4
    k8s-node1 Ready <none> 31d v1.20.4
    k8s-node2 Ready <none> 31d v1.20.4

    至此,一套完整的 Kubernetes 高可用集群就部署完成了!

    本文作者:二价亚铁.

    本文链接:https://www.cnblogs.com/xw-01/p/18262554

    版权声明:本作品采用知识共享署名-非商业性使用-禁止演绎 2.5 中国大陆许可协议进行许可。

  • 相关阅读:
    应用程序接口(API)安全的入门指南
    C/C++学习笔记 CMake 与 Make有什么区别?
    带你了解如何防御DDoS攻击
    C# Excel操作类EPPlus
    毕业季限时“开业”,麓山南便利店送给毕业生满满的仪式感
    上下架和橱窗推荐如何设置,优化过程需要注意的地方
    【弱监督学习】Learning from Incomplete and Inaccurate Supervision
    基于蜉蝣优化的BP神经网络(分类应用) - 附代码
    ipa文件怎么把应用上架到苹果ios系统下载的App Store商城
    (数据科学学习手札150)基于dask对geopandas进行并行加速
  • 原文地址:https://www.cnblogs.com/xw-01/p/18262554