SparkStreaming:使用微批次来模拟流计算,数据已时间为单位分为一个个批次,通过RDD进行分布式计算
Flink:基于事件驱动,是面向流的处理框架,是真正的流式计算
SparkStreaming:角色包括 Master、Worker、Driver、Executor
Flink:角色包括 Jonmanager、Taskmanager和slot
SparkStreaming:只支持基于处理时间的窗口操作
Flink:可以支持时间窗口,也支持基于事件的窗口如滑动、滚动、会话窗口等
SparkStreaming:只支持处理时间,产生数据堆积时候,处理时间和事件时间误差明显
Flink:支持事件时间、注入时间、处理时间,同事支持watermark机制处理迟到的数据,在处理大乱序的实时数据更有优势
SparkStreaming:基于RDD或对宽依赖添加CheckPoint,利用 SparkStreaming的 direct方式与kafka保证 exactly once
Flink:基于状态添加CheckPoint,通过俩阶段提交协议来保证 exactly once
SparkStreaming:基于微批次的处理使得吞吐量是最大的,但付出了延迟的代价,只能做到秒级处理
Flink:数据是逐条处理,容错机制很轻量级,兼顾了吞吐量的同时又有很低的延迟,支持毫秒级处理

Flink 中任务调度执行的图,按照生成顺序可以分成四层: 逻辑流图(StreamGraph)→ 作业图(JobGraph)→ 执行图(ExecutionGraph)→ 物理图(Physical Graph)

这是根据用户通过 DataStream API 编写的代码生成的最初的 DAG 图,用来表示程序的拓扑结构。这一步一般在客户端完成。
StreamGraph 经过优化后生成的就是作业图(JobGraph),这是提交给 JobManager 的数据结构,确定了当前作业中所有任务的划分。主要的优化为: 将多个符合条件的节点链接在一起合并成一个任务节点,形成算子链,这样可以减少数据交换的消耗。JobGraph 一般也是在客户端生成的,在作业提交时传递给 JobMaster。
JobMaster 收到 JobGraph 后,会根据它来生成执行图(ExecutionGraph)。ExecutionGraph是 JobGraph 的并行化版本,是调度层最核心的数据结构。ExecutionGraph 更进一步细化了 JobGraph 中的任务,并考虑了容错、调度等因素。
JobMaster 生成执行图后, 会将它分发给 TaskManager;各个 TaskManager 会根据执行图
部署任务,最终的物理执行过程也会形成一张“图”,一般就叫作物理图(Physical Graph)。
这只是具体执行层面的图,并不是一个具体的数据结构。
在 Flink 程序执行过程中,每一个算子(operator)可以包含一个或多个子任务(operator subtask),这些子任务在不同的线程、不同的物理机或不同的容器中完全独立地执行。每个算子的子任务(subtask)的个数被称之为其并行度(parallelism)。一般情况下,程序的并行度,可以认为就是其所有算子中最大的并行度。一个程序中,不同的算子可能具有不同的并行度。
一个数据流在算子之间传输数据的形式可以是一对一(one-to-one)的直通 (forwarding)模式,也可以是打乱的重分区(redistributing)模式,具体是哪一种形式,取决于算子的种类。
数据流维护着分区以及元素的顺序。source算子读取数据之后,可以直接发送给 map 算子做处理,它们之间不需要重新分区,也不需要调整数据的顺序。这就意味着 map 算子的子任务,看到的元素个数和顺序跟 source 算子的子任务产生的完全一样,保证着“一对一”的关系。
数据流的分区会发生改变。每一个算子的子任务,会根据数据传输的策略,把数据发送到不同的下游目标任务。例如,keyBy()是分组操作,本质上基于键(key)的哈希值(hashCode)进行了重分区;而当并行度改变时,比如从并行度为 2 的 window 算子,要传递到并行度为 1 的 Sink 算子,这时的数据传输方式是再平衡(rebalance),会把数据均匀地向下游子任务分发出去。
在 Flink 中,并行度相同的一对一(one to one)算子操作,可以直接链接在一起形成一个“大”的任务(task),这样原来的算子就成为了真正任务里的一部分。这样的技术被称为合并算子链。

Operator State可以用在所有算子上,每个算子子任务或者说每个算子实例共享一个状态,流入这个算子子任务的数据可以访问和更新这个状态。
算子状态的实际应用场景不如 Keyed State 多,一般用在 Source 或 Sink 等与外部系统连接
的算子上,或者完全没有 key 定义的场景。比如 Flink 的 Kafka 连接器中,就用到了算子状态。 在我们给 Source 算子设置并行度后,Kafka 消费者的每一个并行实例,都会为对应的主题( topic)维护一个偏移量, 作为算子状态保存起来。
对于 Operator State 来说因为不存在 key,所有数据发往哪个分区是不可预测的;也就是说,当发生故障重启之后,我们不能保证某个数据跟之前一样,进入到同一个并行子任务、访问同一个状态。所以 Flink 无法直接判断该怎样保存和恢复状态,而是提供了 接口,让我们根据业务需求自行设计状态的快照保存(snapshot)和恢复(restore)逻辑。
广播状态(BroadcastState):有时我们希望算子并行子任务都保持同一份“全局”状态,用来做统一的配置和规则设定。这时所有分区的所有数据都会访问到同一个状态,状态就像被“广播”到所有分区一样,这种特殊的算子状态,就叫作广播状态(BroadcastState)。
列表状态(ListState)
联合列表状态(UnionListState)

状态是根据输入流中定义的键(key)来维护和访问的,相当于用key来进行物理隔离,所以只能定义在按键分区流(KeyedStream)中,也就 keyBy 之后才可以使用。
不同 key 对应的 Keyed State可以进一步组成所谓的键组(key groups),每一组都对应着一个并行子任务。键组是 Flink 重新分配 Keyed State 的单元,键组的数量就等于定义的最大并行度。当算子并行度发生改变时,Keyed State 就会按照当前的并行度重新平均分配,保证运行时各个子任务的负载相同。
在事件时间的语义下,不依赖于系统时间,基于数据自带的时间戳去定义一个时钟,表示当前时间的进展
在实际计算过程中,Flink 的算子一般分布在多个并行的分区上,Flink 需要将 Watermark 在并行环境向下游传播。如下图所示,由于上游各分区的处理速度不同,到达当前算子的Watermark 也会有先后之分,每个算子子任务会维护来自上游不同分区的Watermark 信息,这是一个列表。每当一个上游传递过来一个水位线,实例会判断该水位线是否大于列表中记录的数值,如果大于则更新水位线。接着实例会遍历整个水位线列表找出最小值作为实例的事件时间,最后,实例会将更新的EventTime作为 Watermark 发送给下游所有算子子任务。

在 Flink 中,我们可以把窗口理解成一个“桶”。在 Flink 中,窗口可以把流切割成有限大小的多个“存储桶”(bucket);每个数据都会分发到对应的桶中,当到达窗口结束时间时,就对每个桶中收集的数据进行计

滚动窗口有固定的大小,是一种对数据进行“均匀切片”的划分方式。窗口之间没有重叠,也不会有间隔,是“首尾相接”的状态。所以每个数据都会被分配到一个窗口,而且只会属于一个窗口。
滚动窗口可以基于时间定义,也可以基于数据个数定义;需要的参数只有一个,就是窗口的大小(window size)。比如我们可以定义一个长度为 1 小时的滚动时间窗口,那么每个小时就会进行一次统计;或者定义一个长度为 10 的滚动计数窗口,就会每 10 个数进行一次统计。
滑动窗口的大小也是固定的。区别在于,窗口之间并不是首尾相接的,而是可以“错开”一定的位置。如果看作一个窗口的运动,那么就像是向前小步“滑动”一样。既然是向前滑动,那么每一步滑多远,就也是可以控制的。
所以定义滑动窗口的参数有两个:除去窗口大小(window size)之外,还有一个“滑动步长”(window slide),它表示当前窗口的开始时间距下次窗口开始时间的时间间隔,也就是窗口计算的频率。例如,我们定义一个长度为 1 小时、滑动步长为 5 分钟的滑动窗口,那么就会统计 1 小时内的数据,每 5 分钟统计一次。同样,滑动窗口可以基于时间定义,也可以基于数据个数定义。
会话窗口长度不固定、起始和结束时间不确定,各个分区窗口之间无关联,会话窗口之间不会重叠。会话窗口只能基于时间定义,终止的标志是隔一段时间没有数据到来。
参数可设置静态固定的size,两个会话窗口之间的最小距离,也可以自定义提取器动态提取最小间隔gap的值
在Flink底层,对会话窗口有特殊的处理:每来一个新数据,都会创建一个新会话窗口,判断已有窗口之间的距离。如果小于给定的size,就将它们合并。
“全局窗口”,这种窗口全局有效,会把相同 key 的所有数据都分配到同一个窗口中;说直白一点,就跟没分窗口一样。无界流的数据永无止尽,所以这种窗口也没有结束的时候,默认是不会做触发计算的。如果希望它能对数据进行计算处理,还需要自定义“触发器”(Trigger)。
在Flink流处理应用中的任务都是有状态的,而为了快速访问这些状态一般会直接放在堆内存里,为了发生故障Flink可以恢复应用的状态,就需要对某个时间点所有的状态状态进行持久化,而Flink的状态持久化分为俩种,checkpoint和savepoint。
检查点其实就是所有任务的状态在某个时间点的一个快照。简单来讲,就是一次“存盘”,让我们之前处理数据的进度不要丢掉。在一个 流应用程序运行时,Flink 会定期保存检查点,在检查点中会记录每个算子的 id 和状态;如果发生故障,Flink 就会用最近一次成功保存的检查点来恢复应用的状态,重新启动处理流程, 就如同“读档”一样。

当进行checkpoint时,TaskManager 会让所有的 Source 任务把自己的偏移量(算子状态)保存起来,并将带有检查点 ID 的分界线(barrier)插入到当前的数据流中,然后像正常的数据一样像下游传递,之后 Source 任务就可以继续读入新的数据了。
Barrier是种特殊的数据形式,把一条流上的数据按照不同的检查点分隔开,所以就叫作检查点的“分界线”(Checkpoint Barrier)。当收到Barrier这个特殊数据的时候,当前算子就把当前的状态进行快照。所以barrier 可以理解为“之前所有数据的状态更改保存入当前检查点”
在一条单一的流上,数据依次进行处理,顺序保持不变,可是对于处理多个分区的传递时数据的顺序就会出现乱序的问题。
算法的核心就是两个原则:

检查点保存的算法具体过程如下:
注意:分界线对齐要求先到达的分区做缓存等待,一定程度上会影响处理的速度。当出现背压( backpressure )时,下游任务会堆积大量的缓冲数据,检查点可能需要很久才可以保存完毕;
当有多个数据流输入的情况下,假设有三个输入流a、b、c,首先从a中接收到了barriers n,但是b/c的barriers n还没到,如果他继续处理a流的barriers n后面的数据,就会导致在处理b/c的barriers n的数据的同时,还会处理了a的barriers n+1的数据,计算状态会混在一起,这个checkpoint也就不合理了,所以要等b、c的barriers n到了,再进快照,这个等待所有分界线到达的过程,称为“分界线对齐”(barrier alignment)
保存点在原理和形式上跟检查点完全一样,也是状态持久化保存的一个快照;区别在于,保存点是自定义的镜像保存,所以不会由 Flink 自动创建,而需要用户手动触发。这在有计划地停止、重启应用时非常有用。
在 Flink 中,状态的存储、访问以及维护,都是由一个可插拔的组件决定的,这个组件就 叫作状态后端(state backend)。状态后端主要负责两件事:一是本地的状态管理,二是将检查点(checkpoint)写入远程的持久化存储。
状态后端是一个“开箱即用”的组件,可以在不改变应用程序逻辑的情况下独立配置。 Flink 中提供了两类不同的状态后端,一种是“哈希表状态后端”(HashMapStateBackend),另 一种是“内嵌 RocksDB 状态后端”(EmbeddedRocksDBStateBackend)。如果没有特别配置, 系统默认的状态后端是 HashMapStateBackend。
这种方式就是我们之前所说的,把状态存放在内存里。具体实现上,哈希表状态后端在内
部会直接把状态当作对象(objects),保存在 Taskmanager 的 JVM 堆(heap)上。普通的状态, 以及窗口中收集的数据和触发器(triggers),都会以键值对(key-value)的形式存储起来,所 以底层是一个哈希表(HashMap),这种状态后端也因此得名。
HashMapStateBackend 是将本地状态全部放入内存的,这样可以获得最快的读写速度,使
计算性能达到最佳,代价则是内存的占用。
RocksDB 是一种内嵌的 key-value 存储介质,可以把数据持久化到本地硬盘。配置 EmbeddedRocksDBStateBackend 后,会将处理中的数据全部放入 RocksDB 数据库中RocksDB
默认存储在 TaskManager 的本地数据目录里。数据被存储为序列化的字节数组(Byte Arrays),读写操作需要序列化/反序列化,因此状态的访问性能要差一些。
由于它会把状态数据落盘,而且支持增量化的检查点,所以在状态非常大、窗口非常长、
键/值状态很大的应用场景中是一个好选择,同样对所有高可用性设置有效。
完整的流处理应用,包括了数据源、流处理器、外部存储系统三个部分。这个完整应用的一致性,叫做端到端的状态一致性,取决于三个组件中最弱的一环。能否达到至少一次(at-least-once)一致性级别,主要看数据源能否重放数据。而能否达到exactly-once级别,数据源、流处理器内部、外部存储系统都要有相应的保证机制。
事务(transaction)是应用程序中一系列严密的操作,所有操作必须成功完成,否则在每个操作中所做的所有更改都会被撤消。事务写入的基本思想就是:用一个事务来进行数据向外部系统的写入,这个事务是与检查点绑定在一起的。当 Sink 任务遇到 barrier 时,开始保存状态的同时就开启一个事务,接下来所有数据的写入都在这个事务中;待到当前检查点保存完毕时,将事务交,所有写入的数据就真正可用了。如果中间过程 出现故障,状态会回退到上一个检查点,而当前事务没有正常关闭(因为当前检查点没有保存完),所以也会回滚,写入到外部的数据就被撤了。
具体来说,又有两种实现方式:预写日志(WAL)和两阶段提交(2PC)
它的想法是分成两个阶段:先做“预提交”,等检查点完成之后再正式提交。这种提交方式是真正基于事务的,它需要外部系统提供事务支持。具体步骤是:
①当第一条数据到来时,或者收到检查点的分界线时,Sink 任务都会启动一个事务。
②接下来接收到的所有数据,都通过这个事务写入外部系统;这时由于事务没有提交,所
以数据尽管写入了外部系统,但是不可用,是“预提交”的状态。
③当 Sink 任务收到 JobManager 发来检查点完成的通知时,正式提交事务,写入的结果就
真正可用了。
当中间发生故障时,当前未提交的事务就会回滚,于是所有写入外部系统的数据也就实现了撤回。这种方式充分利用了 Flink 现有的检查点机制:分界线的到来,就标志着开始一个新事务;而收到来自 JobManager 的 checkpoint 成功的消息,就是提交事务的指令。每个结果数据的写入,依然是流式的,不再有预写日志时批处理的性能问题;最终提交时,也只需要额外发送一个确认信息。所以 2PC 协议不仅真正意义上实现了 exactly-once ,而且通过搭载 Flink 的检查点机制来实现事务,只给系统增加了很少的开销。 Flink 提供 TwoPhaseCommitSinkFunction 接口,方便我们自定义实现两阶段提交的 SinkFunction 的实现,提供了真正端到端的 exactly-once 保证。
预写日志(WAL)就是一种非常简单的方式。具体步骤是:
①先把结果数据作为日志(log)状态保存起来
②进行检查点保存时,也会将这些结果数据一并做持久化存储
③在收到检查点完成的通知时,将所有结果一次性写入外部系统。
这种方式类似于检查点完成时做一个批处理,一次性的写入会带来一些性能上的问题;而优点就是比较简单,由于数据提前在状态后端中做了缓存,所以无论什么外部存储系统,理论上都能用这种方式一批搞定。在 Flink 中 DataStream API 提供了GenericWriteAheadSink类,用来实现这种事务型的写入方式。
复杂事件处理(Complex Event Processing,CEP):针对流处理而言,分析的是低延迟、频繁产生的事件流,检测特定的数据组合
CEP的流出可分为三个步骤:
1、定义一个匹配规则
2、将匹配规则应用到事件流上,检测满足规则的复杂事件
3、对检测到的复杂事件进行处理,得到结果进行输出
模式(Pattern):CEP第一步定义对匹配规则
系统在一个临时负载峰值期间接收数据的速率大于其处理速率的一种场景(通俗的讲:接收速度 > 接收速度),处理不当会导致资源耗尽,数据丢失
按照业务的情况,如果一般数据延迟在3秒内,那么可以设置水位线延迟时间为3秒,通过可以解决大部分数据迟到的问题
由于大部分乱序数据已经被水位线的延迟等到了,所以往往迟到的数据不会太多。这样,我们会在水位线到达窗口结束时间时,先快速地输出一个近似正确的计算结果; 然后保持窗口继续等到延迟数据,每来一条数据,窗口就会再次计算,并将更新后的结果输出。这样就可以逐步修正计算结果,最终得到准确的统计值了。
即使有了前面的双重保证,可窗口不能一直等下去,最后总要真正关闭。窗口一旦关闭,后续的数据就都要被丢弃了。只能用窗口的侧输出流来收集关窗以后的迟到数据。这种方式是最后“兜底”的方法,只能保证数据不丢失;因为窗口已经真正关闭,所以是无法基于之前窗口的结果直接做更新的。