• 【线性代数】6.4 exercise20


    answer

    To show that A" role="presentation">A and Q" role="presentation">Q have the same column space, we'll use the given hints:

    ### Step 1: Show that Col ACol Q" role="presentation">Col ACol Q
    Given yCol A" role="presentation">yCol A, we can write y=Ax" role="presentation">y=Ax for some vector x" role="presentation">x.

    Since A=QR" role="presentation">A=QR and R" role="presentation">R is invertible, we have:

    y=Ax=QRx" role="presentation">y=Ax=QRx

    Let x=Rx" role="presentation">x=Rx. Since R" role="presentation">R is invertible, x" role="presentation">x can be any vector in Rn" role="presentation">Rn. Thus:

    y=Qx" role="presentation">y=Qx

    This shows that y" role="presentation">y is also in the column space of Q" role="presentation">Q, i.e., Col ACol Q" role="presentation">Col ACol Q.

    ### Step 2: Show that Col QCol A" role="presentation">Col QCol A
    Given yCol Q" role="presentation">yCol Q, we can write y=Qx" role="presentation">y=Qx for some vector x" role="presentation">x.

    Since A=QR" role="presentation">A=QR and R" role="presentation">R is invertible, we can multiply both sides by R1" role="presentation">R1:
    \[ Q = AR^{-1} \]

    Thus:

    y=Qx=AR1x" role="presentation">y=Qx=AR1x

    Let x=R1x" role="presentation">x=R1x. Since R" role="presentation">R is invertible, x" role="presentation">x can be any vector in Rn" role="presentation">Rn. Thus:

    y=Ax" role="presentation">y=Ax

    This shows that y" role="presentation">y is also in the column space of A" role="presentation">A, i.e., Col QCol A" role="presentation">Col QCol A.

    ### Conclusion
    Since we've shown that Col ACol Q" role="presentation">Col ACol Q and Col QCol A" role="presentation">Col QCol A, we conclude that Col A=Col Q" role="presentation">Col A=Col Q.

    Therefore, A" role="presentation">A and Q" role="presentation">Q have the same column space.

    details

    To understand why x" role="presentation">x can be any vector in Rn" role="presentation">Rn, let's break it down step by step.

    ### Understanding the Concept

    Given that R" role="presentation">R is an invertible matrix:

    1. **Invertibility of R" role="presentation">R**: Since R" role="presentation">R is invertible, there exists a matrix R1" role="presentation">R1 such that:
       

    RR1=I" role="presentation">RR1=I

       where I" role="presentation">I is the identity matrix.

    2. **Transformation by R" role="presentation">R**: Any vector xRn" role="presentation">xRn can be transformed by multiplying it by R" role="presentation">R, resulting in a new vector x" role="presentation">x. We write:
       

    x=Rx" role="presentation">x=Rx

    3. **Invertible Transformation**: Because R" role="presentation">R is invertible, we can always find x" role="presentation">x given x" role="presentation">x by multiplying x" role="presentation">x by R1" role="presentation">R1:
       

    x=R1x" role="presentation">x=R1x

    ### Why x" role="presentation">x Can Be Any Vector in Rn" role="presentation">Rn

    Let's see why x" role="presentation">x can be any vector in Rn" role="presentation">Rn:

    1. **Surjectivity**: The function f:RnRn" role="presentation">f:RnRn defined by f(x)=Rx" role="presentation">f(x)=Rx is surjective because for any vector x" role="presentation">x in the output space (the codomain), there exists an x" role="presentation">x in the input space (the domain) such that Rx=x" role="presentation">Rx=x. This is because R" role="presentation">R has full rank (since it's invertible).

    2. **Vector Space Mapping**: Since R" role="presentation">R maps Rn" role="presentation">Rn to itself in a bijective manner (one-to-one and onto), for every vector xRn" role="presentation">xRn, there exists a vector xRn" role="presentation">xRn such that x=Rx" role="presentation">x=Rx.

    3. **Existence of x" role="presentation">x**: Given any vector xRn" role="presentation">xRn, we can always find a corresponding vector x" role="presentation">x using x=R1x" role="presentation">x=R1x. Therefore, x" role="presentation">x can be any vector in Rn" role="presentation">Rn.

    ### Example

    Let's consider a concrete example with R" role="presentation">R:

    1. Suppose R" role="presentation">R is a 2x2 invertible matrix:
       

    R=(2113)" role="presentation">R=(2113)

    2. We can find R1" role="presentation">R1:
       

    R1=15(3112)" role="presentation">R1=15(3112)

    3. Now, given any vector xR2" role="presentation">xR2, say x=(45)" role="presentation">x=(45):
       

    x=R1x=15(3112)(45)=15(34+(1)5(1)4+25)=15(1254+10)=(1.41.2)" role="presentation">x=R1x=15(3112)(45)=15(34+(1)5(1)4+25)=15(1254+10)=(1.41.2)

    This shows that for any x" role="presentation">x, we can find an x" role="presentation">x such that x=Rx" role="presentation">x=Rx, thus demonstrating that x" role="presentation">x can indeed be any vector in Rn" role="presentation">Rn.

    By understanding this property of invertible matrices, we can see why x" role="presentation">x can be any vector in Rn" role="presentation">Rn.

  • 相关阅读:
    基于图搜索的规划算法之A*家族(二):双向A*算法
    帮你搜遍GitHub!一次性解决面试中常见并发编程问题,附笔记合集
    计算二叉树的深度和叶子结点数
    模糊控制器实现对某个对象追踪输入
    性能测试工具-JMeter与LoadRunner的比较
    数据分析报告怎么写
    利用HTML5 MediaDevices API调用手机摄像头并结合JavaScript库实现人脸识别
    深入了解直播美颜工具与视频美颜SDK的实现与优化策略
    DGIOT-Modbus-RTU控制指令05、06的配置与下发
    【校招VIP】产品原型产品需求要点分析
  • 原文地址:https://blog.csdn.net/EllaZeng/article/details/139827169