• 快速识别你家的猫猫狗狗,教你用ModelBox开发AI萌宠应用


    本文分享自华为云社区《ModelBox-AI应用开发:动物目标检测【玩转华为云】》,作者:阳光大猫。

    一、准备环境

    ModelBox端云协同AI开发套件(Windows)环境准备视频教程

    二、应用开发

    1. 创建工程

    ModelBox sdk目录下使用create.bat创建yolov7_pet工程

    复制代码
    (tensorflow) PS D:\modelbox-win10-x64-1.5.3> .\create.bat -t server -n yolov7_pet 
    
    (tensorflow) D:\modelbox-win10-x64-1.5.3>set BASE_PATH=D:\modelbox-win10-x64-1.5.3\ 
    
    (tensorflow) D:\modelbox-win10-x64-1.5.3>set PATH=D:\modelbox-win10-x64-1.5.3\\python-embed;C:\Users\yanso\miniconda3\envs\tensorflow\lib\site-packages\pywin32_system32;C:\Users\yanso\miniconda3\envs\tensorflow;C:\Users\yanso\miniconda3\envs\tensorflow\Library\mingw-w64\bin;C:\Users\yanso\miniconda3\envs\tensorflow\Library\usr\bin;C:\Users\yanso\miniconda3\envs\tensorflow\Library\bin;C:\Users\yanso\miniconda3\envs\tensorflow\Scripts;C:\Users\yanso\miniconda3\envs\tensorflow\bin;C:\Users\yanso\miniconda3\condabin;C:\Windows\System32\HWAudioDriverLibs;C:\Windows\system32;C:\Windows;C:\Windows\System32\Wbem;C:\Windows\System32\WindowsPowerShell\v1.0;C:\Windows\System32\OpenSSH;C:\Users\Administrator\AppData\Local\Microsoft\WindowsApps;C:\WINDOWS\system32;C:\WINDOWS;C:\WINDOWS\System32\Wbem;C:\WINDOWS\System32\WindowsPowerShell\v1.0;C:\WINDOWS\System32\OpenSSH;C:\Program Files\Git\cmd;C:\Users\yanso\miniconda3;C:\Users\yanso\miniconda3\Scripts;C:\Users\yanso\miniconda3\Library\bin;.;C:\Program Files\Git LFS;C:\Users\yanso\AppData\Local\Microsoft\WindowsApps;.;C:\Users\yanso\AppData\Local\Programs\Microsoft VS Code\bin;C:\Users\yanso\miniconda3\envs\tensorflow\lib\site-packages\pywin32_system32;C:\Users\yanso\miniconda3;C:\Users\yanso\miniconda3\Library\mingw-w64\bin;C:\Users\yanso\miniconda3\Library\usr\bin;C:\Users\yanso\miniconda3\Library\bin;C:\Users\yanso\miniconda3\Scripts;C:\Users\yanso\miniconda3\bin;C:\Users\yanso\miniconda3\condabin;C:\Windows\System32\HWAudioDriverLibs;C:\Windows\system32;C:\Windows;C:\Windows\System32\Wbem;C:\Windows\System32\WindowsPowerShell\v1.0;C:\Windows\System32\OpenSSH;C:\Users\Administrator\AppData\Local\Microsoft\WindowsApps;C:\WINDOWS\system32;C:\WINDOWS;C:\WINDOWS\System32\Wbem;C:\WINDOWS\System32\WindowsPowerShell\v1.0;C:\WINDOWS\System32\OpenSSH;C:\Program Files\Git\cmd;C:\Users\yanso\miniconda3;C:\Users\yanso\miniconda3\Scripts;C:\Users\yanso\miniconda3\Library\bin;.;C:\Program Files\Git LFS;C:\Users\yanso\AppData\Local\Microsoft\WindowsApps;.;C:\Users\yanso\AppData\Local\Programs\Microsoft VS Code\bin;C:\Windows\System32\HWAudioDriverLibs;C:\Windows\system32;C:\Windows;C:\Windows\System32\Wbem;C:\Windows\System32\WindowsPowerShell\v1.0;C:\Windows\System32\OpenSSH;C:\Users\Administrator\AppData\Local\Microsoft\WindowsApps;C:\WINDOWS\system32;C:\WINDOWS;C:\WINDOWS\System32\Wbem;C:\WINDOWS\System32\WindowsPowerShell\v1.0;C:\WINDOWS\System32\OpenSSH;C:\Program Files\Git\cmd;C:\Users\yanso\miniconda3;C:\Users\yanso\miniconda3\Scripts;C:\Users\yanso\miniconda3\Library\bin;.;C:\Program Files\Git LFS;C:\Users\yanso\AppData\Local\Microsoft\WindowsApps;.;C:\Users\yanso\AppData\Local\Programs\Microsoft VS Code\bin
    
    (tensorflow) D:\modelbox-win10-x64-1.5.3>set PYTHONPATH=
    
    (tensorflow) D:\modelbox-win10-x64-1.5.3>set PYTHONHOME=
    
    (tensorflow) D:\modelbox-win10-x64-1.5.3>python.exe -u D:\modelbox-win10-x64-1.5.3\\create.py -t server -n yolov7_pet
    sdk version is modelbox-win10-x64-1.5.3
    dos2unix: converting file D:\modelbox-win10-x64-1.5.3\workspace\yolov7_pet/graph\modelbox.conf to Unix format...
    dos2unix: converting file D:\modelbox-win10-x64-1.5.3\workspace\yolov7_pet/graph\yolov7_pet.toml to Unix format...
    dos2unix: converting file D:\modelbox-win10-x64-1.5.3\workspace\yolov7_pet/bin\mock_task.toml to Unix format...
    success: create yolov7_pet in D:\modelbox-win10-x64-1.5.3\workspace
    复制代码

    create.bat工具的参数中,-t表示所创建实例的类型,包括serverModelBox工程)、python(Python功能单元)、c++(C++功能单元)、infer(推理功能单元)等;-n表示所创建实例的名称,开发者自行命名。

    2. 创建推理功能单元

    ModelBox sdk目录下使用create.bat创建yolov7_infer推理功能单元

    复制代码
    (tensorflow) PS D:\modelbox-win10-x64-1.5.3> .\create.bat -t infer -n yolov7_infer -p yolov7_pet  
    
    (tensorflow) D:\modelbox-win10-x64-1.5.3>set BASE_PATH=D:\modelbox-win10-x64-1.5.3\ 
    
    (tensorflow) D:\modelbox-win10-x64-1.5.3>set PATH=D:\modelbox-win10-x64-1.5.3\\python-embed;C:\Users\yanso\miniconda3\envs\tensorflow\lib\site-packages\pywin32_system32;C:\Users\yanso\miniconda3\envs\tensorflow;C:\Users\yanso\miniconda3\envs\tensorflow\Library\mingw-w64\bin;C:\Users\yanso\miniconda3\envs\tensorflow\Library\usr\bin;C:\Users\yanso\miniconda3\envs\tensorflow\Library\bin;C:\Users\yanso\miniconda3\envs\tensorflow\Scripts;C:\Users\yanso\miniconda3\envs\tensorflow\bin;C:\Users\yanso\miniconda3\condabin;C:\Windows\System32\HWAudioDriverLibs;C:\Windows\system32;C:\Windows;C:\Windows\System32\Wbem;C:\Windows\System32\WindowsPowerShell\v1.0;C:\Windows\System32\OpenSSH;C:\Users\Administrator\AppData\Local\Microsoft\WindowsApps;C:\WINDOWS\system32;C:\WINDOWS;C:\WINDOWS\System32\Wbem;C:\WINDOWS\System32\WindowsPowerShell\v1.0;C:\WINDOWS\System32\OpenSSH;C:\Program Files\Git\cmd;C:\Users\yanso\miniconda3;C:\Users\yanso\miniconda3\Scripts;C:\Users\yanso\miniconda3\Library\bin;.;C:\Program Files\Git LFS;C:\Users\yanso\AppData\Local\Microsoft\WindowsApps;.;C:\Users\yanso\AppData\Local\Programs\Microsoft VS Code\bin;C:\Users\yanso\miniconda3\envs\tensorflow\lib\site-packages\pywin32_system32;C:\Users\yanso\miniconda3;C:\Users\yanso\miniconda3\Library\mingw-w64\bin;C:\Users\yanso\miniconda3\Library\usr\bin;C:\Users\yanso\miniconda3\Library\bin;C:\Users\yanso\miniconda3\Scripts;C:\Users\yanso\miniconda3\bin;C:\Users\yanso\miniconda3\condabin;C:\Windows\System32\HWAudioDriverLibs;C:\Windows\system32;C:\Windows;C:\Windows\System32\Wbem;C:\Windows\System32\WindowsPowerShell\v1.0;C:\Windows\System32\OpenSSH;C:\Users\Administrator\AppData\Local\Microsoft\WindowsApps;C:\WINDOWS\system32;C:\WINDOWS;C:\WINDOWS\System32\Wbem;C:\WINDOWS\System32\WindowsPowerShell\v1.0;C:\WINDOWS\System32\OpenSSH;C:\Program Files\Git\cmd;C:\Users\yanso\miniconda3;C:\Users\yanso\miniconda3\Scripts;C:\Users\yanso\miniconda3\Library\bin;.;C:\Program Files\Git LFS;C:\Users\yanso\AppData\Local\Microsoft\WindowsApps;.;C:\Users\yanso\AppData\Local\Programs\Microsoft VS Code\bin;C:\Windows\System32\HWAudioDriverLibs;C:\Windows\system32;C:\Windows;C:\Windows\System32\Wbem;C:\Windows\System32\WindowsPowerShell\v1.0;C:\Windows\System32\OpenSSH;C:\Users\Administrator\AppData\Local\Microsoft\WindowsApps;C:\WINDOWS\system32;C:\WINDOWS;C:\WINDOWS\System32\Wbem;C:\WINDOWS\System32\WindowsPowerShell\v1.0;C:\WINDOWS\System32\OpenSSH;C:\Program Files\Git\cmd;C:\Users\yanso\miniconda3;C:\Users\yanso\miniconda3\Scripts;C:\Users\yanso\miniconda3\Library\bin;.;C:\Program Files\Git LFS;C:\Users\yanso\AppData\Local\Microsoft\WindowsApps;.;C:\Users\yanso\AppData\Local\Programs\Microsoft VS Code\bin 
    
    (tensorflow) D:\modelbox-win10-x64-1.5.3>set PYTHONPATH= 
    
    (tensorflow) D:\modelbox-win10-x64-1.5.3>set PYTHONHOME= 
    
    (tensorflow) D:\modelbox-win10-x64-1.5.3>python.exe -u D:\modelbox-win10-x64-1.5.3\\create.py -t infer -n yolov7_infer -p yolov7_pet    
    sdk version is modelbox-win10-x64-1.5.3
    success: create infer yolov7_infer in D:\modelbox-win10-x64-1.5.3\workspace\yolov7_pet/model/yolov7_infer
    复制代码

    create.bat工具使用时,-t infer 即表示创建的是推理功能单元;-n xxx_infer 表示创建的功能单元名称为xxx_infer-p yolov7_infer 表示所创建的功能单元属于yolov7_infer应用。

    a. 下载转换好的模型

    运行此Notebook下载转换好的ONNX格式模型

    屏幕截图 2024-06-10 062945.png

    b. 修改模型配置文件

    模型和配置文件保持在同级目录下

    复制代码
    # Copyright (C) 2020 Huawei Technologies Co., Ltd. All rights reserved.
    
    [base]
    name = "yolov7_infer"
    device = "cpu"
    version = "1.0.0"
    description = "your description"
    entry = "./best.onnx"  # model file path, use relative path
    type = "inference" 
    virtual_type = "onnx" # inference engine type: win10 now only support onnx
    group_type = "Inference"  # flowunit group attribution, do not change
    
    # Input ports description
    [input]
    [input.input1]  # input port number, Format is input.input[N]
    name = "Input"  # input port name
    type = "float"  # input port data type ,e.g. float or uint8
    device = "cpu"  # input buffer type: cpu, win10 now copy input from cpu
    
    # Output ports description
    [output]
    [output.output1] # output port number, Format is output.output[N]
    name = "Output"  # output port name
    type = "float"   # output port data type ,e.g. float or uint8
    复制代码

    3. 创建后处理功能单元

    ModelBox sdk目录下使用create.bat创建yolov7_post后处理功能单元

    复制代码
    (tensorflow) PS D:\modelbox-win10-x64-1.5.3> .\create.bat -t python -n yolov7_post -p yolov7_pet  
    
    (tensorflow) D:\modelbox-win10-x64-1.5.3>set BASE_PATH=D:\modelbox-win10-x64-1.5.3\ 
    
    (tensorflow) D:\modelbox-win10-x64-1.5.3>set PATH=D:\modelbox-win10-x64-1.5.3\\python-embed;C:\Users\yanso\miniconda3\envs\tensorflow\lib\site-packages\pywin32_system32;C:\Users\yanso\miniconda3\envs\tensorflow;C:\Users\yanso\miniconda3\envs\tensorflow\Library\mingw-w64\bin;C:\Users\yanso\miniconda3\envs\tensorflow\Library\usr\bin;C:\Users\yanso\miniconda3\envs\tensorflow\Library\bin;C:\Users\yanso\miniconda3\envs\tensorflow\Scripts;C:\Users\yanso\miniconda3\envs\tensorflow\bin;C:\Users\yanso\miniconda3\condabin;C:\Windows\System32\HWAudioDriverLibs;C:\Windows\system32;C:\Windows;C:\Windows\System32\Wbem;C:\Windows\System32\WindowsPowerShell\v1.0;C:\Windows\System32\OpenSSH;C:\Users\Administrator\AppData\Local\Microsoft\WindowsApps;C:\WINDOWS\system32;C:\WINDOWS;C:\WINDOWS\System32\Wbem;C:\WINDOWS\System32\WindowsPowerShell\v1.0;C:\WINDOWS\System32\OpenSSH;C:\Program Files\Git\cmd;C:\Users\yanso\miniconda3;C:\Users\yanso\miniconda3\Scripts;C:\Users\yanso\miniconda3\Library\bin;.;C:\Program Files\Git LFS;C:\Users\yanso\AppData\Local\Microsoft\WindowsApps;.;C:\Users\yanso\AppData\Local\Programs\Microsoft VS Code\bin;C:\Users\yanso\miniconda3\envs\tensorflow\lib\site-packages\pywin32_system32;C:\Users\yanso\miniconda3;C:\Users\yanso\miniconda3\Library\mingw-w64\bin;C:\Users\yanso\miniconda3\Library\usr\bin;C:\Users\yanso\miniconda3\Library\bin;C:\Users\yanso\miniconda3\Scripts;C:\Users\yanso\miniconda3\bin;C:\Users\yanso\miniconda3\condabin;C:\Windows\System32\HWAudioDriverLibs;C:\Windows\system32;C:\Windows;C:\Windows\System32\Wbem;C:\Windows\System32\WindowsPowerShell\v1.0;C:\Windows\System32\OpenSSH;C:\Users\Administrator\AppData\Local\Microsoft\WindowsApps;C:\WINDOWS\system32;C:\WINDOWS;C:\WINDOWS\System32\Wbem;C:\WINDOWS\System32\WindowsPowerShell\v1.0;C:\WINDOWS\System32\OpenSSH;C:\Program Files\Git\cmd;C:\Users\yanso\miniconda3;C:\Users\yanso\miniconda3\Scripts;C:\Users\yanso\miniconda3\Library\bin;.;C:\Program Files\Git LFS;C:\Users\yanso\AppData\Local\Microsoft\WindowsApps;.;C:\Users\yanso\AppData\Local\Programs\Microsoft VS Code\bin;C:\Windows\System32\HWAudioDriverLibs;C:\Windows\system32;C:\Windows;C:\Windows\System32\Wbem;C:\Windows\System32\WindowsPowerShell\v1.0;C:\Windows\System32\OpenSSH;C:\Users\Administrator\AppData\Local\Microsoft\WindowsApps;C:\WINDOWS\system32;C:\WINDOWS;C:\WINDOWS\System32\Wbem;C:\WINDOWS\System32\WindowsPowerShell\v1.0;C:\WINDOWS\System32\OpenSSH;C:\Program Files\Git\cmd;C:\Users\yanso\miniconda3;C:\Users\yanso\miniconda3\Scripts;C:\Users\yanso\miniconda3\Library\bin;.;C:\Program Files\Git LFS;C:\Users\yanso\AppData\Local\Microsoft\WindowsApps;.;C:\Users\yanso\AppData\Local\Programs\Microsoft VS Code\bin
    
    (tensorflow) D:\modelbox-win10-x64-1.5.3>set PYTHONPATH=
    
    (tensorflow) D:\modelbox-win10-x64-1.5.3>set PYTHONHOME=
    
    (tensorflow) D:\modelbox-win10-x64-1.5.3>python.exe -u D:\modelbox-win10-x64-1.5.3\\create.py -t python -n yolov7_post -p yolov7_pet
    sdk version is modelbox-win10-x64-1.5.3
    success: create python yolov7_post in D:\modelbox-win10-x64-1.5.3\workspace\yolov7_pet/etc/flowunit/yolov7_post
    复制代码

    a. 修改配置文件

    复制代码
    # Copyright (c) Huawei Technologies Co., Ltd. 2022. All rights reserved.
    
    # Basic config
    [base]
    name = "yolov7_post" # The FlowUnit name
    device = "cpu" # The flowunit runs on cpu
    version = "1.0.0" # The version of the flowunit
    type = "python" # Fixed value, do not change
    description = "description" # The description of the flowunit
    entry = "yolov7_post@yolov7_postFlowUnit" # Python flowunit entry function
    group_type = "Generic"  # flowunit group attribution, change as Input/Output/Image/Generic ...
    
    # Flowunit Type
    stream = false # Whether the flowunit is a stream flowunit
    condition = false # Whether the flowunit is a condition flowunit
    collapse = false # Whether the flowunit is a collapse flowunit
    collapse_all = false # Whether the flowunit will collapse all the data
    expand = false #  Whether the flowunit is a expand flowunit
    
    # The default Flowunit config
    [config]
    net_h = 640
    net_w = 640
    num_classes = 2
    conf_threshold = 0.5
    iou_threshold = 0.45
    
    # Input ports description
    [input]
    [input.input1] # Input port number, the format is input.input[N]
    name = "in_feat" # Input port name
    type = "float" # Input port type
    
    # Output ports description
    [output]
    [output.output1] # Output port number, the format is output.output[N]
    name = "out_data" # Output port name
    type = "string" # Output port type
    复制代码

    b. 修改逻辑代码

    复制代码
    # Copyright (c) Huawei Technologies Co., Ltd. 2022. All rights reserved.
    
    #!/usr/bin/env python
    # -*- coding: utf-8 -*-
    import _flowunit as modelbox
    import numpy as np
    import json
    import cv2
    
    class yolov7_postFlowUnit(modelbox.FlowUnit):
        # Derived from modelbox.FlowUnit
        def __init__(self):
            super().__init__()
    
        # Open the flowunit to obtain configuration information
        def open(self, config):
            # 获取功能单元的配置参数
            self.params = {}
            self.params['net_h'] = config.get_int('net_h')
            self.params['net_w'] = config.get_int('net_w')
            self.params['num_classes'] = config.get_int('num_classes')
            self.params['conf_thre'] = config.get_float('conf_threshold')
            self.params['nms_thre'] = config.get_float('iou_threshold')
            self.num_classes = config.get_int('num_classes')
    
            return modelbox.Status.StatusCode.STATUS_SUCCESS
    
        # Process the data
        def process(self, data_context):
            # 从DataContext中获取输入输出BufferList对象
            in_feat = data_context.input("in_feat")
            out_data = data_context.output("out_data")
    
            # yolov7_post process code.
            # 循环处理每一个输入Buffer数据
            for buffer_feat in in_feat:
                # 将输入Buffer转换为numpy对象
                feat_data = np.array(buffer_feat.as_object(), copy=False)
                feat_data = feat_data.reshape((-1, self.num_classes + 5))
    
                # 业务处理:解码yolov7模型的输出数据,得到检测框,转化为json数据
                bboxes = self.postprocess(feat_data, self.params)
                result = {"det_result": str(bboxes)}
                print(result)
    
                # 将业务处理返回的结果数据转换为Buffer
                result_str = json.dumps(result)
                out_buffer = modelbox.Buffer(self.get_bind_device(), result_str)
    
                # 将输出Buffer放入输出BufferList中
                out_data.push_back(out_buffer)
    
            return modelbox.Status.StatusCode.STATUS_SUCCESS
        
        # model post-processing function
        def postprocess(self, feat_data, params):
            """postprocess for yolo7 model"""
            boxes = []
            class_ids = []
            confidences = []
            for detection in feat_data:
                scores = detection[5:]
                class_id = np.argmax(scores)
                if params['num_classes'] == 1:
                    confidence = detection[4]
                else:
                    confidence = detection[4] * scores[class_id] 
                if confidence > params['conf_thre'] and detection[4] > params['conf_thre']:
                    center_x = detection[0] / params['net_w']
                    center_y = detection[1] / params['net_h']
                    width = detection[2] / params['net_w']
                    height = detection[3] / params['net_h']
    
                    left = center_x - width / 2
                    top = center_y - height / 2
    
                    class_ids.append(class_id)
                    confidences.append(confidence)
                    boxes.append([left, top, width, height])
    
            # use nms algorithm in opencv
            box_idx = cv2.dnn.NMSBoxes(
                boxes, confidences, params['conf_thre'], params['nms_thre'])
    
            detections = []
            for i in box_idx:
                boxes[i][0] = max(0.0, boxes[i][0])  # [0, 1]
                boxes[i][1] = max(0.0, boxes[i][1])  # [0, 1]
                boxes[i][2] = min(1.0, boxes[i][0] + boxes[i][2])  # [0, 1]
                boxes[i][3] = min(1.0, boxes[i][1] + boxes[i][3])  # [0, 1]
                dets = np.concatenate(
                    [boxes[i], np.array([confidences[i]]), np.array([class_ids[i]])], 0).tolist()
                detections.append(dets)
    
            return detections
    
        def close(self):
            # Close the flowunit
            return modelbox.Status()
    
        def data_pre(self, data_context):
            # Before streaming data starts
            return modelbox.Status()
    
        def data_post(self, data_context):
            # After streaming data ends
            return modelbox.Status()
    
        def data_group_pre(self, data_context):
            # Before all streaming data starts
            return modelbox.Status()
    
        def data_group_post(self, data_context):
            # After all streaming data ends
            return modelbox.Status()
    复制代码

    4. 修改流程图

    yolov7_pet工程graph目录下存放流程图,默认的流程图yolov7_pet.toml与工程同名,其内容为(以Windows版ModelBox为例):

    复制代码
    # Copyright (C) 2020 Huawei Technologies Co., Ltd. All rights reserved.
    
    [driver]
    dir = ["${HILENS_APP_ROOT}/etc/flowunit",
    "${HILENS_APP_ROOT}/etc/flowunit/cpp",
    "${HILENS_APP_ROOT}/model",
    "${HILENS_MB_SDK_PATH}/flowunit"]
    skip-default = true
    [profile]
    profile=false
    trace=false
    dir="${HILENS_DATA_DIR}/mb_profile"
    [graph]
    format = "graphviz"
    graphconf = """digraph yolov7_pet {
        node [shape=Mrecord]
        queue_size = 4
        batch_size = 1
        input1[type=input,flowunit=input,device=cpu,deviceid=0]
    
        httpserver_sync_receive[type=flowunit, flowunit=httpserver_sync_receive_v2, device=cpu, deviceid=0, time_out_ms=5000, endpoint="http://0.0.0.0:8083/v1/yolov7_pet", max_requests=100]
        image_decoder[type=flowunit, flowunit=image_decoder, device=cpu, key="image_base64", queue_size=4]
        image_resize[type=flowunit, flowunit=resize, device=cpu, deviceid=0, image_width=640, image_height=640]
        image_transpose[type=flowunit, flowunit=packed_planar_transpose, device=cpu, deviceid=0]
        normalize[type=flowunit flowunit=normalize device=cpu deviceid=0 standard_deviation_inverse="0.0039215686,0.0039215686,0.0039215686"]
        yolov7_infer[type=flowunit, flowunit=yolov7_infer, device=cpu, deviceid=0, batch_size = 1]
        yolov7_post[type=flowunit, flowunit=yolov7_post, device=cpu, deviceid=0]
        httpserver_sync_reply[type=flowunit, flowunit=httpserver_sync_reply_v2, device=cpu, deviceid=0]
        
        input1:input -> httpserver_sync_receive:in_url
        httpserver_sync_receive:out_request_info -> image_decoder:in_encoded_image
        image_decoder:out_image -> image_resize:in_image
        image_resize:out_image -> image_transpose:in_image
        image_transpose:out_image -> normalize:in_data
        normalize:out_data -> yolov7_infer:Input
        yolov7_infer:Output -> yolov7_post:in_feat
        yolov7_post:out_data -> httpserver_sync_reply:in_reply_info
    }"""
    [flow]
    desc = "yolov7_pet run in modelbox-win10-x64"
    复制代码

    5. 准备动物图片和测试脚本

    a. 动物图片

    yolov7_pet工程data目录下存放动物图片文件夹test_imgs

    Abyssinian_1.jpg

    saint_bernard_143.jpg

    b. 测试脚本

    yolov7_pet工程data目录下存放测试脚本test_http.py

    复制代码
    #!/usr/bin/env python
    # -*- coding: utf-8 -*-
    
    # Copyright (c) Huawei Technologies Co., Ltd. 2022. All rights reserved.
    
    import os
    import cv2
    import json
    import base64
    import http.client
    class HttpConfig:
        '''http调用的参数配置'''
        def __init__(self, host_ip, port, url, img_base64_str):
            self.hostIP = host_ip
            self.Port = port
    
            self.httpMethod = "POST"
            self.requstURL = url
            self.headerdata = {
                "Content-Type": "application/json"
            }
            self.test_data = {
                "image_base64": img_base64_str
            }
            self.body = json.dumps(self.test_data)
    def read_image(img_path):
        '''读取图片数据并转为base64编码的字符串'''
        img_data = cv2.imread(img_path)
        img_str = cv2.imencode('.jpg', img_data)[1].tostring()
        img_bin = base64.b64encode(img_str)
        img_base64_str = str(img_bin, encoding='utf8')
        return img_data, img_base64_str
    def decode_car_bboxes(bbox_str, input_shape):
        try:
            labels = [0, 1]  # cat, dog
            bboxes = json.loads(json.loads(bbox_str)['det_result'])
            bboxes = list(filter(lambda x: int(x[5]) in labels, bboxes))
        except Exception as ex:
            print(str(ex))
            return []
        else:
            for bbox in bboxes:
                bbox[0] = int(bbox[0] * input_shape[1])
                bbox[1] = int(bbox[1] * input_shape[0])
                bbox[2] = int(bbox[2] * input_shape[1])
                bbox[3] = int(bbox[3] * input_shape[0])
            return bboxes
    def draw_bboxes(img_data, bboxes):
        '''画框'''
        for bbox in bboxes:
            x1, y1, x2, y2, score, label = bbox
            color = (0, 0, 255)
            names = ['cat', 'dog']  
            score = '%.2f' % score
            label = '%s:%s' % (names[int(label)], score)
            cv2.rectangle(img_data, (x1, y1), (x2, y2), color, 2)
            cv2.putText(img_data, label, (x1, y1 - 10), cv2.FONT_HERSHEY_TRIPLEX, 0.5, (0, 255, 0), thickness=1)
        return img_data
    def test_image(img_path, ip, port, url):
        '''单张图片测试'''
        img_data, img_base64_str = read_image(img_path)
        http_config = HttpConfig(ip, port, url, img_base64_str)
    
        conn = http.client.HTTPConnection(host=http_config.hostIP, port=http_config.Port)
        conn.request(method=http_config.httpMethod, url=http_config.requstURL,
                    body=http_config.body, headers=http_config.headerdata)
    
        response = conn.getresponse().read().decode()
        print('response: ', response)
    
        bboxes = decode_car_bboxes(response, img_data.shape)
        imt_out = draw_bboxes(img_data, bboxes)
        cv2.imwrite('./result-' + os.path.basename(img_path), imt_out)
    if __name__ == "__main__":
        port = 8083
        ip = "127.0.0.1"
        url = "/v1/yolov7_pet"
        img_path = "./test.jpg"
        img_folder = './test_imgs'
        file_list = os.listdir(img_folder)
        for img_file in file_list:
            print("\n================ {} ================".format(img_file))
            img_path = os.path.join(img_folder, img_file)
            test_image(img_path, ip, port, url)
    复制代码

    三、运行应用

    yolov7_pet工程目录下执行.\bin\main.bat运行应用:

    复制代码
    (tensorflow) PS D:\modelbox-win10-x64-1.5.3> cd D:\modelbox-win10-x64-1.5.3\workspace\yolov7_pet
    (tensorflow) PS D:\modelbox-win10-x64-1.5.3\workspace\yolov7_pet> .\bin\main.bat
    
    (tensorflow) D:\modelbox-win10-x64-1.5.3\workspace\yolov7_pet>set PATH=D:/modelbox-win10-x64-1.5.3/workspace/yolov7_pet/bin/../../../python-embed;D:/modelbox-win10-x64-1.5.3/workspace/yolov7_pet/bin/../../../modelbox-win10-x64/bin;D:/modelbox-win10-x64-1.5.3/workspace/yolov7_pet/bin/../dependence/lib;C:\Users\yanso\miniconda3\envs\tensorflow\lib\site-packages\pywin32_system32;C:\Users\yanso\miniconda3\envs\tensorflow;C:\Users\yanso\miniconda3\envs\tensorflow\Library\mingw-w64\bin;C:\Users\yanso\miniconda3\envs\tensorflow\Library\usr\bin;C:\Users\yanso\miniconda3\envs\tensorflow\Library\bin;C:\Users\yanso\miniconda3\envs\tensorflow\Scripts;C:\Users\yanso\miniconda3\envs\tensorflow\bin;C:\Users\yanso\miniconda3\condabin;C:\Windows\System32\HWAudioDriverLibs;C:\Windows\system32;C:\Windows;C:\Windows\System32\Wbem;C:\Windows\System32\WindowsPowerShell\v1.0;C:\Windows\System32\OpenSSH;C:\Users\Administrator\AppData\Local\Microsoft\WindowsApps;C:\WINDOWS\system32;C:\WINDOWS;C:\WINDOWS\System32\Wbem;C:\WINDOWS\System32\WindowsPowerShell\v1.0;C:\WINDOWS\System32\OpenSSH;C:\Program Files\Git\cmd;C:\Users\yanso\miniconda3;C:\Users\yanso\miniconda3\Scripts;C:\Users\yanso\miniconda3\Library\bin;.;C:\Program Files\Git LFS;C:\Users\yanso\AppData\Local\Microsoft\WindowsApps;.;C:\Users\yanso\AppData\Local\Programs\Microsoft VS Code\bin;C:\Users\yanso\miniconda3\envs\tensorflow\lib\site-packages\pywin32_system32;C:\Users\yanso\miniconda3;C:\Users\yanso\miniconda3\Library\mingw-w64\bin;C:\Users\yanso\miniconda3\Library\usr\bin;C:\Users\yanso\miniconda3\Library\bin;C:\Users\yanso\miniconda3\Scripts;C:\Users\yanso\miniconda3\bin;C:\Users\yanso\miniconda3\condabin;C:\Windows\System32\HWAudioDriverLibs;C:\Windows\system32;C:\Windows;C:\Windows\System32\Wbem;C:\Windows\System32\WindowsPowerShell\v1.0;C:\Windows\System32\OpenSSH;C:\Users\Administrator\AppData\Local\Microsoft\WindowsApps;C:\WINDOWS\system32;C:\WINDOWS;C:\WINDOWS\System32\Wbem;C:\WINDOWS\System32\WindowsPowerShell\v1.0;C:\WINDOWS\System32\OpenSSH;C:\Program Files\Git\cmd;C:\Users\yanso\miniconda3;C:\Users\yanso\miniconda3\Scripts;C:\Users\yanso\miniconda3\Library\bin;.;C:\Program Files\Git LFS;C:\Users\yanso\AppData\Local\Microsoft\WindowsApps;.;C:\Users\yanso\AppData\Local\Programs\Microsoft VS Code\bin;C:\Windows\System32\HWAudioDriverLibs;C:\Windows\system32;C:\Windows;C:\Windows\System32\Wbem;C:\Windows\System32\WindowsPowerShell\v1.0;C:\Windows\System32\OpenSSH;C:\Users\Administrator\AppData\Local\Microsoft\WindowsApps;C:\WINDOWS\system32;C:\WINDOWS;C:\WINDOWS\System32\Wbem;C:\WINDOWS\System32\WindowsPowerShell\v1.0;C:\WINDOWS\System32\OpenSSH;C:\Program Files\Git\cmd;C:\Users\yanso\miniconda3;C:\Users\yanso\miniconda3\Scripts;C:\Users\yanso\miniconda3\Library\bin;.;C:\Program Files\Git LFS;C:\Users\yanso\AppData\Local\Microsoft\WindowsApps;.;C:\Users\yanso\AppData\Local\Programs\Microsoft VS Code\bin 
    
    (tensorflow) D:\modelbox-win10-x64-1.5.3\workspace\yolov7_pet>modelbox.exe -c D:/modelbox-win10-x64-1.5.3/workspace/yolov7_pet/bin/../graph/modelbox.conf 
    [2024-06-10 06:42:50,922][ WARN][    iva_config.cc:143 ] update vas url failed. Fault, no vas projectid or iva endpoint
    open log file D:/modelbox-win10-x64-1.5.3/workspace/yolov7_pet/bin/../hilens_data_dir/log/modelbox.log failed, No error
    input dims is:1,3,640,640,
    output dims is:1,25200,7,
    复制代码

    HTTP服务启动后可以在另一个终端进行请求测试,进入yolov7_pet工程目录data文件夹中使用test_http.py脚本发起HTTP请求进行测试:

    复制代码
    (tensorflow) PS D:\modelbox-win10-x64-1.5.3> cd D:\modelbox-win10-x64-1.5.3\workspace\yolov7_pet\data                                                        
    (tensorflow) PS D:\modelbox-win10-x64-1.5.3\workspace\yolov7_pet\data> python .\test_http.py                                                                 
    
    ================ Abyssinian_1.jpg ================
    .\test_http.py:33: DeprecationWarning: tostring() is deprecated. Use tobytes() instead.
      img_str = cv2.imencode('.jpg', img_data)[1].tostring()
    response:  {"det_result": "[[0.554308044910431, 0.1864600658416748, 0.7089953303337098, 0.3776256084442139, 0.82369065284729, 0.0]]"}
    
    ================ saint_bernard_143.jpg ================
    response:  {"det_result": "[[0.46182055473327643, 0.30239262580871584, 0.8193012714385988, 0.4969032764434815, 0.7603430151939392, 1.0]]"}
    复制代码

    屏幕截图 2024-06-10 064427.png

    四、小结

    本章我们介绍了如何使用ModelBox开发一个动物目标检测的AI应用,我们只需要准备模型文件以及简单的配置即可创建一个HTTP服务。同时我们可以了解到图片标注、数据处理和模型训练方法,以及对应的推理应用逻辑。

     

    点击关注,第一时间了解华为云新鲜技术~

     

  • 相关阅读:
    自动化运维工具Ansible工具学习及使用---持续更新中
    一文进阶什么是负载均衡,通俗易懂的全文解析
    Linux学习——目录操作和库使用
    道可云元宇宙每日资讯|《江苏省元宇宙产业发展行动计划》发布
    简单vlan配置
    【C++内存管理侯捷】---学习笔记(下)malloc/free,loki allocator,other issue
    Vue + Volo.Abp 实现OAuth2.0客户端授权模式认证
    成集云 | 成销云移动商城集成用友NC | 解决方案
    监控系统典型架构
    CTP:关于cc和bindgen库及rust工程组织
  • 原文地址:https://www.cnblogs.com/huaweiyun/p/18245167