• 高中数学:平面向量-常考题型汇总


    一、数量积运算

    例题1

    在这里插入图片描述
    解析
    首先,为了化简运算过程,我们把OA、OB、OC向量记作a、b、c向量。
    其次,充分利用已知条件,进行消元,两边平方,可以消除一个向量
    a → \mathop{a}\limits ^{\rightarrow} a * a → \mathop{a}\limits ^{\rightarrow} a =| a → \mathop{a}\limits ^{\rightarrow} a |*| a → \mathop{a}\limits ^{\rightarrow} a |
    最后,把待求式向已知条件转化。
    最终得出答案
    在这里插入图片描述


    例题2

    在这里插入图片描述
    解析
    由题知道,D点为BC中点。
    从而,PA向量可以用AD和PD向量表示。
    AD向量可以由AB和AC向量表示
    得出最终结论
    答案选D
    在这里插入图片描述


    二、坐标运算

    例题1

    在这里插入图片描述
    解析
    这里有个默认规则,就是,四边形ABCD的四个顶点是顺时针或者逆时针的。不会出现交叉情况。
    那么第一小问,就一种情况的四边形。
    很轻松就求出答案。
    第二小问,难点在求最值这个地方。
    a,b出现2次项,所以,我们可以用配方法,求最值。
    在这里插入图片描述在这里插入图片描述


    三、建坐标系

    通过该方法,把向量的数量积问题,转化成向量的坐标运算问题

    1、垂直向量可以建系

    例题1

    在这里插入图片描述在这里插入图片描述


    2、三角形中线可以建系

    例题2

    由于这一题没有说明三角形是什么三角形,所以,我们可以找个特殊的等腰直角三角形来建系求解
    在这里插入图片描述在这里插入图片描述


    3、等边三角形可以建系

    例题3

    在这里插入图片描述
    在这里插入图片描述


    4、各种特殊图像的建系方法

    在这里插入图片描述


    四、求两向量和与差的模

    例题1

    在这里插入图片描述
    解析
    此题有3种解法
    都需要结合二元一次函数的最值求解
    根据|a-b|=√3,可以求出向量a和向量b的夹角。
    方法1,根据向量共线的定义,构建方程求解
    方法2,根据这个夹角建立坐标系,在根据向量共线的坐标运算,构建方程求解
    方法3,特殊三角形的几何方法求解,适合做选择题和填空题


    方法1
    在这里插入图片描述


    方法2
    在这里插入图片描述


    方法3
    在这里插入图片描述

  • 相关阅读:
    行业内口碑好值得信赖的短网址,让你不再选择恐惧
    阿里云ECS服务器的搭建学习
    七、cadence ic 5141 ——反相器原理图设计
    单臂路由 - 实验配置
    LVS的认识与快速上手
    Apache Tomcat 代理配置
    数模之线性规划
    PermissionError: [WinError 5] 拒绝访问。OSError: [WinError 17] 系统无法将文件移到不同的磁盘驱动器。
    零基础 Chrome 扩展开发指南
    RetinaNet网络理解
  • 原文地址:https://blog.csdn.net/Brave_heart4pzj/article/details/139288352