• 实验三:机器学习1.0


    要求:

    针对实验1和实验2构建的数据集信息分析

    设计实现通过数据简介进行大类分类的程序

    代码实现:

    训练集数据获取:

    read_data.py

    1. import json
    2. import pickle
    3. def read_intro():
    4. data = []
    5. trypath=r"E:\Procedure\Python\Experiment\first.json"
    6. filepath=r"E:\Procedure\Python\Experiment\res1.json"
    7. with open(filepath, 'r', encoding='utf-8') as file:
    8. for line in file:
    9. record = json.loads(line)
    10. if record.get('intro')!='':
    11. data.append(record)
    12. return data
    13. def store_model(model):
    14. # 加载模型
    15. file=r'E:\Procedure\Python\Experiment\Machine_Learning\model1.pkl'
    16. try:
    17. # 尝试以 'xb' 模式打开文件,如果文件不存在则创建新文件
    18. with open(file, 'wb') as file:
    19. # 使用 pickle 序列化模型并写入文件
    20. pickle.dump(model, file)
    21. except FileExistsError:
    22. print("File already exists. Cannot overwrite existing file.")
    23. except Exception as e:
    24. print("An error occurred:", e)
    25. # 使用加载的模型进行预测
    26. #predictions = loaded_model.predict(X_test)
    27. def store_report(report):
    28. file=r"E:\Procedure\Python\Experiment\Machine_Learning\class_report.txt"
    29. with open(file,'w')as file:
    30. file.write(report)
    31. return
    32. def get_model():
    33. m_path=r'E:\Procedure\Python\Experiment\Machine_Learning\model1.pkl'
    34. try:
    35. with open(m_path,'rb')as file:
    36. loaded_model=pickle.load(file)
    37. return loaded_model
    38. except Exception as e:
    39. print(e)
    40. return None
    训练模型:

    多项式朴素贝叶斯模型用于单一标签文本分类

    1. # 导入所需的库
    2. from sklearn.feature_extraction.text import TfidfVectorizer
    3. from sklearn.naive_bayes import MultinomialNB
    4. from sklearn.model_selection import train_test_split
    5. from sklearn.metrics import accuracy_score, classification_report
    6. import read_data
    7. import random
    8. data=read_data.read_intro()
    9. random.shuffle(data)
    10. X = [item['intro'] for item in data]
    11. y = [item['mainclass'] for item in data]
    12. # 文本向量化
    13. vectorizer = TfidfVectorizer()
    14. X_vectorized = vectorizer.fit_transform(X)
    15. # 将数据集划分为训练集和测试集
    16. X_train, X_test, y_train, y_test = train_test_split(X_vectorized, y, test_size=0.2, random_state=42)
    17. # 初始化朴素贝叶斯分类器
    18. model = read_data.get_model()
    19. #model = MultinomialNB()
    20. # 训练模型
    21. model.fit(X_train, y_train)
    22. # 在测试集上进行预测
    23. y_pred = model.predict(X_test)
    24. read_data.store_model(model)
    25. # 评估模型性能
    26. accuracy = accuracy_score(y_test, y_pred)
    27. print("Accuracy:", accuracy)
    28. # 打印分类报告
    29. print("\nClassification Report:")
    30. report=classification_report(y_test, y_pred,zero_division=0)
    31. print(report)
    32. read_data.store_report(report)

    结果:

  • 相关阅读:
    VUE3+Vite3开发网易云音乐 Day1 后端环境搭建
    java计算机毕业设计小型医院药品及门诊管理源码+数据库+系统+lw文档+mybatis+运行部署
    LESS vs. SCSS:选择何种CSS预处理器?
    国内“惨淡”,国外“飞腾”,腾讯将增持育碧,力争成为最大股东
    QT之QCheckBox的用法
    YDOOK:onnx onnxruntime Python APIs 接口文档网址
    云原生|kubernetes|找回丢失的etcd集群节点---etcd节点重新添加,扩容和重新初始化k8s的master节点
    vue大型电商项目尚品汇(后台篇)day02
    ubuntu docker 部署 vue 项目
    【畅购商城】购物车模块之修改购物车以及结算
  • 原文地址:https://blog.csdn.net/Xm041206/article/details/138907342