Flink CDC(Change Data Capture)是 Apache Flink 提供的一个变更数据捕获工具集。它可以监控数据库的变更,并将这些变更实时地以流的形式提供给下游系统,这些变更包括插入、更新和删除操作。
Flink CDC 适用于需要实时数据管道和数据流处理的场景,如实时数据分析、数据仓库更新、缓存同步、ETL 过程、微服务架构中的数据一致性等。
官网简介:

Flink 是一个更通用的流处理平台,而 Flink CDC 是构建在 Flink 之上,专注于变更数据捕获和流式数据同步的工具集。
Apache Flink 是一个开源的流处理框架,用于实时数据流的处理和分析。Flink 提供了用于构建分布式流处理应用的丰富API,包括数据流编程模型、窗口操作、状态管理、时间语义等。Flink 能够以极高的吞吐量和低延迟运行复杂的数据分析任务,并且保证数据流的一致性和准确性。Flink 也支持批处理,因此它可以作为批处理和流处理的统一引擎。
Flink CDC 是 Flink 社区提供的变更数据捕获工具集,它允许用户捕获数据库的增量变化,并将这些变化实时地以流的形式提供给下游系统。Flink CDC 工具可以监控数据库的变更,并将这些变更作为事件流输出,这些事件流可以被 Flink 流处理作业所消费。
联系:
区别:
Flink CDC的增量快照读取机制是在Flink CDC 2.x版本中引入的。这一机制允许Flink CDC以更高效的方式进行数据捕获,它通过将数据表分割成多个chunk(分片),并行地对这些chunk进行快照读取,从而提高了读取速度和整体性能。
此外,Flink CDC 2.x版本还引入了Exactly-Once语义,确保数据处理结果的精确一次性,并且支持动态加表和无主键表的处理。
在Flink CDC 2.3版本中,除了对MySQL CDC的优化,还增加了对Db2、MongoDB和Oracle CDC的支持,并且这些连接器也都接入了增量快照框架,从而提供了无锁读取、并行读取和断点续传的能力。
假设你需要从 MySQL 数据库捕获变更,并将变更数据流转发到 Kafka。以下是一个使用 Flink CDC 的简单代码示例:
import org.apache.flink.streaming.api.environment.StreamExecutionEnvironment;
import org.apache.flink.streaming.api.datastream.DataStream;
import org.apache.flink.connector.jdbc.JdbcExecutionOptions;
import org.apache.flink.connector.jdbc.JdbcSink;
import com.ververica.cdc.connectors.mysql.MySqlSource;
import com.ververica.cdc.debezium.JsonDebeziumDeserializationSchema;
public class FlinkCdcDemo {
public static void main(String[] args) throws Exception {
StreamExecutionEnvironment env = StreamExecutionEnvironment.getExecutionEnvironment();
MySqlSource<String> mySqlSource = MySqlSource.<String>builder()
.hostname("your-db-hostname")
.port(3306)
.databaseList("your-database-name")
.tableList("your-database-name.your-table-name") // 可以更精确地指定表名
.username("your-db-user")
.password("your-db-password")
.deserializer(new JsonDebeziumDeserializationSchema()) // 使用 JSON 格式解析数据
.build();
DataStream<String> stream = env.fromSource(mySqlSource, WatermarkStrategy.noWatermarks(), "MySQL Source");
stream.addSink(new FlinkKafkaProducer<String>(
"your-kafka-topic",
new SimpleStringSchema(),
PropertiesUtil.getKafkaProperties()
));
env.execute("Flink CDC MySQL to Kafka");
}
}
Flink CDC 的原理基于变更数据捕获(Change Data Capture)技术,其核心思想是监测并捕获数据库的增量变化,如新增、修改和删除操作,然后将这些变化实时地以流的形式提供给下游系统。
工作原理可以概括为以下几个步骤:
数据捕获:CDC 引擎通过 Source Connector 从数据源中捕获变更数据。这些变更数据可以是新增、更新、删除等操作对数据的修改,通常以日志形式存在于数据源中。
数据解析:CDC 引擎对捕获的变更数据进行解析,将其转换成 Flink 的数据流格式。这包括解析变更操作的类型、影响的数据记录以及具体的变更内容等信息。
数据转换:在解析的基础上,CDC 引擎可能会对变更数据进行一些额外的转换操作,以适应目标系统或处理逻辑的要求。例如,将数据库中的行数据转换成 Flink 中的数据流格式。
数据传输:转换后的数据流被发送到 Flink 流式处理框架中进行进一步的实时处理和分析。这可以包括各种流处理操作,如数据过滤、聚合、计算等。
数据写入:处理后的数据流最终被 Sink Connector 写入到目标系统或存储介质中。这可以是将数据写入到文件系统、数据库表、消息队列等,以供后续的查询、分析或其他用途。
1、Flink 的 MySQL CDC Connector 使用 MySQL 的二进制日志(Binlog)来捕获数据变更。Binlog 是 MySQL 中记录对数据进行更改的二进制日志文件。
2、Connector 连接到 MySQL 的 Binlog,监控其中的变更事件。通过解析 Binlog,Connector 可以了解到数据库中发生的插入、更新和删除等操作。
3、Connector 将捕获到的变更事件转换为 Flink DataStream,使其成为 Flink 流处理应用程序的输入。
1、Flink 的 PostgreSQL CDC Connector 使用 PostgreSQL 的逻辑复制机制来捕获数据变更。
2、Connector 创建一个 PostgreSQL 的逻辑复制插槽(replication slot),然后订阅这个插槽以获取数据库中的变更事件。
3、通过逻辑复制插槽,Connector 可以获取到插入、更新和删除等操作的变更事件,并将其转换为 Flink DataStream。
1、Debezium 是一个独立的开源 CDC 连接器,支持多种数据库。Flink 可以通过 Flink 的 Kafka Connector 与 Debezium 集成。
2、Debezium 连接到数据库的事务日志,并将变更事件发送到 Apache Kafka 中。Flink 使用 Flink 的 Kafka Connector 从 Kafka 中读取这些变更事件。
3、通过与 Debezium 集成,Flink 能够实现对多种数据库的 CDC 支持,包括 MySQL、PostgreSQL、MongoDB等。