• 一条龙-T检验+绘制boxplot


    1.输入文件:
    在这里插入图片描述

    2.代码

    #title:boxplot-5utr-cds-3tr-ATCG的百分比分布和T检验_封装函数版
    rm(list=ls(all=TRUE))
    setwd("E:/R/Rscripts/5UTR_ABD_TE")
    library(tidyverse)
    library(ggplot2)
    # library(RColorBrewer)
    library(patchwork)
    library(dplyr)
    library(tidyr)
    library(openxlsx)
    library(stringr)
    dfutr5<- read.table(file="lijinonextended_5utr_ATCG.fasta",na.strings = "#N/A",sep="\t",header = TRUE)
    dfcds<- read.table("lijinonextended_cds_ATCG.fasta",na.strings = "#N/A",sep="\t",header = TRUE)
    dfutr3<- read.table("lijinonextended_3utr_ATCG.fasta",na.strings = "#N/A",sep="\t",header = TRUE)
    
    
    
    
    reshape_data_frame <- function(df, id_column = NULL) {
      # 如果指定了ID列,则保留ID列,否则只处理核苷酸列
      if (!is.null(id_column)) {
        df_long <- df %>%
          pivot_longer(
            cols = c(A, T, C, G),
            names_to = "nucleotide",
            values_to = "percentage",
            id_cols = id_column  # 保留ID列
          )
      } else {
        df_long <- df %>%
          select(-Sequence_ID) %>%
          pivot_longer(
            cols = c(A, T, C, G),
            names_to = "nucleotide",
            values_to = "percentage"
          )
      }
      
      return(df_long)
    }
    
    
    # 调用函数,转换数据框,假设我们想保留Id列
    # reshaped_df <- reshape_data_frame(df, id_column = "Id")
    # print(reshaped_df)
    
    # 如果不想保留Id列
    dfutr5longer<- reshape_data_frame(dfutr5) %>% mutate(percentage1=percentage/100)
    dfcdslonger<- reshape_data_frame(dfcds)%>% mutate(percentage1=percentage/100)
    dfutr3longer<- reshape_data_frame(dfutr3)%>% mutate(percentage1=percentage/100)
    
    ##############################################
    #######定义函数用于T检验
    ##############################################
    
    perform_all_combinations_T_test <- function(df, group_column, score_column, df_name) {
      # 获取所有唯一的组
      unique_groups <- unique(df[[group_column]])
      
      # 生成所有可能的两两组合
      combinations <- combn(unique_groups, 2, simplify = FALSE)
      
      # 初始化一个空的数据框来存储结果
      results_df <- data.frame(Comparison = character(), 
                               Mean1 = numeric(), 
                               Mean2 = numeric(), 
                               Pvalue = numeric(), 
                               stringsAsFactors = FALSE)
      
      # 遍历每一对组合进行T检验
      for(combination in combinations) {
        group1 <- combination[1]
        group2 <- combination[2]
        
        # 提取两个组的指定Score值
        scores_group1 <- df[[score_column]][df[[group_column]] == group1]
        scores_group2 <- df[[score_column]][df[[group_column]] == group2]
        
        # 确保scores_group1和scores_group2不为空并且都是数值型
        if (length(scores_group1) > 0 && length(scores_group2) > 0 && 
            all(is.numeric(scores_group1)) && all(is.numeric(scores_group2))) {
          
          # 进行T检验
          t_test_result <- t.test(scores_group1, scores_group2)
          
          # 计算两个组的均值
          mean_group1 <- mean(scores_group1, na.rm = TRUE)
          mean_group2 <- mean(scores_group2, na.rm = TRUE)
          
          # 向结果数据框添加一行
          comparison_value <- paste(df_name, group1, "_Vs_", df_name, group2, sep="")
          new_row <- data.frame(Comparison = comparison_value,
                                Mean1 = mean_group1, 
                                Mean2 = mean_group2, 
                                Pvalue = t_test_result$p.value, 
                                stringsAsFactors = FALSE)
          results_df <- rbind(results_df, new_row)
        }
      }
      
      return(results_df)
    }
    
    
    # 调用函数的例子:
    result5utr <- perform_all_combinations_T_test(dfutr5longer, "nucleotide", "percentage1", "5utr")
    resultcds <- perform_all_combinations_T_test(dfcdslonger, "nucleotide", "percentage1", "cds")
    result3utr <- perform_all_combinations_T_test(dfutr3longer, "nucleotide", "percentage1", "3utr")
    
    # # 正确的调用方法
    # t.test_result <- t.test(
    #   dfutr5longer$percentage1[dfutr5longer$nucleotide == "A"],
    #   dfutr5longer$percentage1[dfutr5longer$nucleotide == "T"]
    # )
    # 
    # # 打印测试结果
    # print(t.test_result)
    
    ###########################################################################
    ##绘制boxplot-自定义函数
    ##########################################################################
    library(tidyverse)
    library(ggplot2)
    library(patchwork)
    
    # 更新函数定义以包括x轴标题作为参数
    create_grouped_boxplot <- function(data, group_var, score_var, x_label = "5'UTR",
                                       y_label = "Score", y_limits = c(0, 100), y_breaks = seq(0, 100, 20), 
                                       fill_values = c("#c59d94", "#afc7e8", "#dbdb8d", "#ff9896")) {
      data[[group_var]] <- factor(data[[group_var]], 
                                  levels = c("A", "T", "C", "G"), 
                                  labels = c("A", "U", "C", "G"), 
                                  ordered = TRUE)
      
      p <-  ggplot(data, aes(x = .data[[group_var]], y = .data[[score_var]], fill = .data[[group_var]])) +
        # geom_violin(trim=FALSE,color="white") + 
        geom_errorbar(width = 0.1,size = 0.35,position = position_dodge(0.9),stat = "boxplot") +
        geom_boxplot(outlier.size = -1,width = 0.25,position = position_dodge(0.9),fatten = 1.2,size = 0.5) +
        theme_classic() +labs(y = y_label, x = x_label) +
        scale_y_continuous(limits = y_limits, breaks = y_breaks) +
        theme(
          strip.background = element_rect(colour = "black", fill = "#FFFFFF"),
          plot.title = element_text(hjust = 0.5, vjust = 1, lineheight = 1, color = "black"),
          panel.background = element_rect(fill = "white", colour = "black", linewidth  = 0.5),
          axis.title.y = element_text(size = 15, face = "bold", color = "black"),
          axis.title.x = element_text(size = 15, face = "bold", color = "black", vjust = 0.5, hjust = 0.5, margin = margin(t = 12)),
          axis.text = element_text(size = 13, face = "bold", color = "black")
        ) +scale_fill_manual(values = fill_values) +guides(fill = "none")
      
      return(p)
    }
    p1 <- create_grouped_boxplot(dfutr5longer, "nucleotide", "percentage", x_label = "5'UTR")
    p2 <- create_grouped_boxplot(dfcdslonger, "nucleotide", "percentage", x_label = "CDS")
    p3 <- create_grouped_boxplot(dfutr3longer, "nucleotide", "percentage", x_label = "3'UTR")
    p4<-p1+p2+p3+plot_layout(nrow = 1,ncol = 3)
    ggsave("boxplot-5utr-cds-3tr-ATCG的百分比分布和T检验.pdf",plot=p4,width=18,height=8)
    
    • 1
    • 2
    • 3
    • 4
    • 5
    • 6
    • 7
    • 8
    • 9
    • 10
    • 11
    • 12
    • 13
    • 14
    • 15
    • 16
    • 17
    • 18
    • 19
    • 20
    • 21
    • 22
    • 23
    • 24
    • 25
    • 26
    • 27
    • 28
    • 29
    • 30
    • 31
    • 32
    • 33
    • 34
    • 35
    • 36
    • 37
    • 38
    • 39
    • 40
    • 41
    • 42
    • 43
    • 44
    • 45
    • 46
    • 47
    • 48
    • 49
    • 50
    • 51
    • 52
    • 53
    • 54
    • 55
    • 56
    • 57
    • 58
    • 59
    • 60
    • 61
    • 62
    • 63
    • 64
    • 65
    • 66
    • 67
    • 68
    • 69
    • 70
    • 71
    • 72
    • 73
    • 74
    • 75
    • 76
    • 77
    • 78
    • 79
    • 80
    • 81
    • 82
    • 83
    • 84
    • 85
    • 86
    • 87
    • 88
    • 89
    • 90
    • 91
    • 92
    • 93
    • 94
    • 95
    • 96
    • 97
    • 98
    • 99
    • 100
    • 101
    • 102
    • 103
    • 104
    • 105
    • 106
    • 107
    • 108
    • 109
    • 110
    • 111
    • 112
    • 113
    • 114
    • 115
    • 116
    • 117
    • 118
    • 119
    • 120
    • 121
    • 122
    • 123
    • 124
    • 125
    • 126
    • 127
    • 128
    • 129
    • 130
    • 131
    • 132
    • 133
    • 134
    • 135
    • 136
    • 137
    • 138
    • 139
    • 140
    • 141
    • 142
    • 143
    • 144
    • 145
    • 146
    • 147
    • 148
    • 149
    • 150
    • 151
    • 152
    • 153
    • 154
    • 155
    • 156

    3.输出结果:
    在这里插入图片描述

  • 相关阅读:
    git使用小结
    01-Sentinel与spring-cloud的整合
    云原生【Docker】—— 认识 Docker、Docker 与虚拟机对比、Docker 组件
    网络安全—小白学习笔记
    278:vue+openlayer中根据半径、起始角度、中心点绘制弧线
    进程的内容
    深度强化学习 第 5 章 SARSA 算法
    基于ASP.NET ZERO,开发SaaS版供应链管理系统
    二十、处理器调度(RR时间片轮转,MLFQ多级反馈队列,CFS完全公平调度器,优先级翻转;多处理器调度)
    可用于智能客服的完全开源免费商用的知识库项目
  • 原文地址:https://blog.csdn.net/weixin_44231554/article/details/138218933