🍨 本文为:[🔗365天深度学习训练营] 中的学习记录博客
🍖 原作者:[K同学啊 | 接辅导、项目定制]
要求:
- import tensorflow as tf
-
- gpus = tf.config.list_physical_devices("GPU")
-
- if gpus:
- tf.config.experimental.set_memory_growth(gpus[0], True) #设置GPU显存用量按需使用
- tf.config.set_visible_devices([gpus[0]],"GPU")
-
- # 打印显卡信息,确认GPU可用
- print(gpus)
根据个人设备情况,选择使用GPU/CPU进行训练,若GPU可用则输出:
[PhysicalDevice(name='/physical_device:GPU:0', device_type='GPU')]
由于在设备上安装的CUDA版本与TensorFlow版本不一致,故这里直接安装了CPU版的TensorFlow,无上述输出。
本项目所采用的数据集未收录于公开数据中,故需要自己在文件目录中导入相应数据集合,并设置对应文件目录,以供后续学习过程中使用。
运行下述代码:
- import pandas as pd
-
- df = pd.read_csv("./data/heart.csv")
- print(df)
得到如下输出:
- age sex cp trestbps chol fbs ... exang oldpeak slope ca thal target
- 0 63 1 3 145 233 1 ... 0 2.3 0 0 1 1
- 1 37 1 2 130 250 0 ... 0 3.5 0 0 2 1
- 2 41 0 1 130 204 0 ... 0 1.4 2 0 2 1
- 3 56 1 1 120 236 0 ... 0 0.8 2 0 2 1
- 4 57 0 0 120 354 0 ... 1 0.6 2 0 2 1
- .. ... ... .. ... ... ... ... ... ... ... .. ... ...
- 298 57 0 0 140 241 0 ... 1 0.2 1 0 3 0
- 299 45 1 3 110 264 0 ... 0 1.2 1 0 3 0
- 300 68 1 0 144 193 1 ... 0 3.4 1 2 3 0
- 301 57 1 0 130 131 0 ... 1 1.2 1 1 3 0
- 302 57 0 1 130 236 0 ... 0 0.0 1 1 2 0
-
- [303 rows x 14 columns]
由于本次所采用的数据集为表格类型,因此,我们需要观察数据中是否有空值、异常值等错误数据的存在,这里我们先观察是否有空值:
- dfnull = df.isnull().sum()
- print(dfnull)
可以得到如下输出:
- age 0
- sex 0
- cp 0
- trestbps 0
- chol 0
- fbs 0
- restecg 0
- thalach 0
- exang 0
- oldpeak 0
- slope 0
- ca 0
- thal 0
- target 0
- dtype: int64
可见,数据集中无空值存在。
测试集与验证集的关系:
- from sklearn.preprocessing import StandardScaler
- from sklearn.model_selection import train_test_split
-
- X = df.iloc[:,:-1]
- y = df.iloc[:,-1]
-
- X_train,X_test,y_train,y_test = train_test_split(X,y,test_size= 0.1 , random_state= 1)
- print(X_train.shape,y_train.shape)
得到如下输出:
(272, 13) (272,)
其中:
- sc = StandardScaler()
- X_train = sc.fit_transform(X_train)
- X_test = sc.transform(X_test)
-
- X_train = X_train.reshape(X_train.shape[0],X_train.shape[1],1)
- X_test = X_test .reshape(X_test .shape[0],X_test .shape[1],1)
其中:
- from tensorflow.keras.models import Sequential
- from tensorflow.keras.layers import Dense,LSTM,SimpleRNN
-
- model = Sequential()
- model.add(SimpleRNN(200,input_shape= (13,1),activation='relu'))
- model.add(Dense(100,activation='relu'))
- model.add(Dense(1,activation='sigmoid'))
- model.summary()
可以得到如下输出:
- Model: "sequential"
- _________________________________________________________________
- Layer (type) Output Shape Param #
- =================================================================
- simple_rnn (SimpleRNN) (None, 200) 40400
- _________________________________________________________________
- dense (Dense) (None, 100) 20100
- _________________________________________________________________
- dense_1 (Dense) (None, 1) 101
- =================================================================
- Total params: 60,601
- Trainable params: 60,601
- Non-trainable params: 0
- _________________________________________________________________
我们调用了tf.keras.layers.SimpleRNN这个原型函数:
tf.keras.layers.SimpleRNN(units, activation='tanh', use_bias=True, kernel_initializer='glorot_uniform', recurrent_initializer='orthogonal', bias_initializer='zeros', return_sequences=False)
其中:
use_bias: 布尔值,表示是否使用偏置项,默认为 True;
kernel_initializer: 权重矩阵的初始化方法,默认为 'glorot_uniform',也称为 Xavier 初始化;
recurrent_initializer: 循环权重矩阵的初始化方法,默认为 'orthogonal',用于循环连接的权重;
bias_initializer: 偏置项的初始化方法,默认为 'zeros';
return_sequences: 布尔值,表示在输出序列中是否返回完整的序列,默认为 False。如果为 True,则返回整个输出序列;如果为 False,则只返回最后一个时间步的输出;
通过下列示例代码:
- opt = tf.keras.optimizers.Adam(learning_rate=1e-5)
-
- model.compile(loss='binary_crossentropy',
- optimizer=opt,
- metrics="accuracy")
通过下列示例代码:
- epochs = 100
-
- history = model.fit(X_train,y_train,
- epochs = epochs,
- batch_size = 128,
- validation_data=(X_test,y_test),
- verbose = 1)
运行得到如下输出:
- Epoch 1/100
- 3/3 [==============================] - 1s 119ms/step - loss: 0.6851 - accuracy: 0.5728 - val_loss: 0.6811 - val_accuracy: 0.6452
- Epoch 2/100
- 3/3 [==============================] - 0s 9ms/step - loss: 0.6831 - accuracy: 0.5796 - val_loss: 0.6795 - val_accuracy: 0.6452
- Epoch 3/100
- 3/3 [==============================] - 0s 9ms/step - loss: 0.6829 - accuracy: 0.5784 - val_loss: 0.6779 - val_accuracy: 0.6452
- Epoch 4/100
- 3/3 [==============================] - 0s 8ms/step - loss: 0.6815 - accuracy: 0.5812 - val_loss: 0.6762 - val_accuracy: 0.6452
- Epoch 5/100
- 3/3 [==============================] - 0s 11ms/step - loss: 0.6796 - accuracy: 0.5947 - val_loss: 0.6745 - val_accuracy: 0.6452
- Epoch 6/100
- 3/3 [==============================] - 0s 8ms/step - loss: 0.6797 - accuracy: 0.6031 - val_loss: 0.6729 - val_accuracy: 0.6774
- Epoch 7/100
- 3/3 [==============================] - 0s 7ms/step - loss: 0.6774 - accuracy: 0.6253 - val_loss: 0.6713 - val_accuracy: 0.7097
- Epoch 8/100
- 3/3 [==============================] - 0s 9ms/step - loss: 0.6760 - accuracy: 0.6394 - val_loss: 0.6697 - val_accuracy: 0.7097
- Epoch 9/100
- 3/3 [==============================] - 0s 9ms/step - loss: 0.6760 - accuracy: 0.6239 - val_loss: 0.6682 - val_accuracy: 0.7097
- Epoch 10/100
- 3/3 [==============================] - 0s 7ms/step - loss: 0.6756 - accuracy: 0.6380 - val_loss: 0.6668 - val_accuracy: 0.7097
- Epoch 11/100
- 3/3 [==============================] - 0s 10ms/step - loss: 0.6743 - accuracy: 0.6564 - val_loss: 0.6655 - val_accuracy: 0.7097
- Epoch 12/100
- 3/3 [==============================] - 0s 9ms/step - loss: 0.6738 - accuracy: 0.6524 - val_loss: 0.6640 - val_accuracy: 0.7419
- Epoch 13/100
- 3/3 [==============================] - 0s 10ms/step - loss: 0.6714 - accuracy: 0.6631 - val_loss: 0.6625 - val_accuracy: 0.7419
- Epoch 14/100
- 3/3 [==============================] - 0s 10ms/step - loss: 0.6715 - accuracy: 0.6524 - val_loss: 0.6610 - val_accuracy: 0.7742
- Epoch 15/100
- 3/3 [==============================] - 0s 9ms/step - loss: 0.6694 - accuracy: 0.6850 - val_loss: 0.6595 - val_accuracy: 0.7419
- Epoch 16/100
- 3/3 [==============================] - 0s 8ms/step - loss: 0.6683 - accuracy: 0.6811 - val_loss: 0.6580 - val_accuracy: 0.7419
- Epoch 17/100
- 3/3 [==============================] - 0s 8ms/step - loss: 0.6688 - accuracy: 0.6598 - val_loss: 0.6565 - val_accuracy: 0.7419
- Epoch 18/100
- 3/3 [==============================] - 0s 8ms/step - loss: 0.6677 - accuracy: 0.6741 - val_loss: 0.6550 - val_accuracy: 0.7419
- Epoch 19/100
- 3/3 [==============================] - 0s 7ms/step - loss: 0.6665 - accuracy: 0.7028 - val_loss: 0.6535 - val_accuracy: 0.7419
- Epoch 20/100
- 3/3 [==============================] - 0s 11ms/step - loss: 0.6665 - accuracy: 0.6949 - val_loss: 0.6520 - val_accuracy: 0.7419
- Epoch 21/100
- 3/3 [==============================] - 0s 10ms/step - loss: 0.6645 - accuracy: 0.7027 - val_loss: 0.6505 - val_accuracy: 0.7742
- Epoch 22/100
- 3/3 [==============================] - 0s 9ms/step - loss: 0.6632 - accuracy: 0.7143 - val_loss: 0.6489 - val_accuracy: 0.7742
- Epoch 23/100
- 3/3 [==============================] - 0s 11ms/step - loss: 0.6619 - accuracy: 0.7084 - val_loss: 0.6474 - val_accuracy: 0.8065
- Epoch 24/100
- 3/3 [==============================] - 0s 9ms/step - loss: 0.6624 - accuracy: 0.6997 - val_loss: 0.6459 - val_accuracy: 0.8065
- Epoch 25/100
- 3/3 [==============================] - 0s 9ms/step - loss: 0.6618 - accuracy: 0.7083 - val_loss: 0.6445 - val_accuracy: 0.8387
- Epoch 26/100
- 3/3 [==============================] - 0s 8ms/step - loss: 0.6601 - accuracy: 0.7169 - val_loss: 0.6431 - val_accuracy: 0.8387
- Epoch 27/100
- 3/3 [==============================] - 0s 8ms/step - loss: 0.6601 - accuracy: 0.7236 - val_loss: 0.6417 - val_accuracy: 0.8387
- Epoch 28/100
- 3/3 [==============================] - 0s 9ms/step - loss: 0.6577 - accuracy: 0.7283 - val_loss: 0.6402 - val_accuracy: 0.8387
- Epoch 29/100
- 3/3 [==============================] - 0s 9ms/step - loss: 0.6567 - accuracy: 0.7282 - val_loss: 0.6388 - val_accuracy: 0.8387
- Epoch 30/100
- 3/3 [==============================] - 0s 9ms/step - loss: 0.6585 - accuracy: 0.7394 - val_loss: 0.6374 - val_accuracy: 0.8387
- Epoch 31/100
- 3/3 [==============================] - 0s 11ms/step - loss: 0.6551 - accuracy: 0.7501 - val_loss: 0.6359 - val_accuracy: 0.8387
- Epoch 32/100
- 3/3 [==============================] - 0s 9ms/step - loss: 0.6549 - accuracy: 0.7462 - val_loss: 0.6345 - val_accuracy: 0.8710
- Epoch 33/100
- 3/3 [==============================] - 0s 9ms/step - loss: 0.6523 - accuracy: 0.7597 - val_loss: 0.6331 - val_accuracy: 0.8710
- Epoch 34/100
- 3/3 [==============================] - 0s 8ms/step - loss: 0.6523 - accuracy: 0.7671 - val_loss: 0.6317 - val_accuracy: 0.9032
- Epoch 35/100
- 3/3 [==============================] - 0s 8ms/step - loss: 0.6512 - accuracy: 0.7749 - val_loss: 0.6303 - val_accuracy: 0.9355
- Epoch 36/100
- 3/3 [==============================] - 0s 9ms/step - loss: 0.6507 - accuracy: 0.7748 - val_loss: 0.6289 - val_accuracy: 0.9355
- Epoch 37/100
- 3/3 [==============================] - 0s 9ms/step - loss: 0.6512 - accuracy: 0.7641 - val_loss: 0.6275 - val_accuracy: 0.9032
- Epoch 38/100
- 3/3 [==============================] - 0s 9ms/step - loss: 0.6495 - accuracy: 0.7641 - val_loss: 0.6261 - val_accuracy: 0.9032
- Epoch 39/100
- 3/3 [==============================] - 0s 10ms/step - loss: 0.6499 - accuracy: 0.7659 - val_loss: 0.6247 - val_accuracy: 0.9032
- Epoch 40/100
- 3/3 [==============================] - 0s 10ms/step - loss: 0.6479 - accuracy: 0.7785 - val_loss: 0.6233 - val_accuracy: 0.9032
- Epoch 41/100
- 3/3 [==============================] - 0s 9ms/step - loss: 0.6483 - accuracy: 0.7640 - val_loss: 0.6218 - val_accuracy: 0.9032
- Epoch 42/100
- 3/3 [==============================] - 0s 10ms/step - loss: 0.6445 - accuracy: 0.7874 - val_loss: 0.6205 - val_accuracy: 0.9032
- Epoch 43/100
- 3/3 [==============================] - 0s 9ms/step - loss: 0.6447 - accuracy: 0.7747 - val_loss: 0.6192 - val_accuracy: 0.9032
- Epoch 44/100
- 3/3 [==============================] - 0s 9ms/step - loss: 0.6459 - accuracy: 0.7718 - val_loss: 0.6179 - val_accuracy: 0.9032
- Epoch 45/100
- 3/3 [==============================] - 0s 10ms/step - loss: 0.6435 - accuracy: 0.7765 - val_loss: 0.6165 - val_accuracy: 0.9032
- Epoch 46/100
- 3/3 [==============================] - 0s 9ms/step - loss: 0.6445 - accuracy: 0.7745 - val_loss: 0.6152 - val_accuracy: 0.9032
- Epoch 47/100
- 3/3 [==============================] - 0s 9ms/step - loss: 0.6443 - accuracy: 0.7695 - val_loss: 0.6138 - val_accuracy: 0.9032
- Epoch 48/100
- 3/3 [==============================] - 0s 9ms/step - loss: 0.6418 - accuracy: 0.7802 - val_loss: 0.6124 - val_accuracy: 0.9032
- Epoch 49/100
- 3/3 [==============================] - 0s 9ms/step - loss: 0.6410 - accuracy: 0.7783 - val_loss: 0.6110 - val_accuracy: 0.9032
- Epoch 50/100
- 3/3 [==============================] - 0s 11ms/step - loss: 0.6410 - accuracy: 0.7763 - val_loss: 0.6096 - val_accuracy: 0.9032
- Epoch 51/100
- 3/3 [==============================] - 0s 10ms/step - loss: 0.6392 - accuracy: 0.7831 - val_loss: 0.6082 - val_accuracy: 0.9032
- Epoch 52/100
- 3/3 [==============================] - 0s 10ms/step - loss: 0.6383 - accuracy: 0.7812 - val_loss: 0.6068 - val_accuracy: 0.9032
- Epoch 53/100
- 3/3 [==============================] - 0s 9ms/step - loss: 0.6387 - accuracy: 0.7657 - val_loss: 0.6053 - val_accuracy: 0.9032
- Epoch 54/100
- 3/3 [==============================] - 0s 11ms/step - loss: 0.6326 - accuracy: 0.8007 - val_loss: 0.6037 - val_accuracy: 0.9032
- Epoch 55/100
- 3/3 [==============================] - 0s 10ms/step - loss: 0.6375 - accuracy: 0.7694 - val_loss: 0.6023 - val_accuracy: 0.9032
- Epoch 56/100
- 3/3 [==============================] - 0s 9ms/step - loss: 0.6389 - accuracy: 0.7800 - val_loss: 0.6008 - val_accuracy: 0.9032
- Epoch 57/100
- 3/3 [==============================] - 0s 10ms/step - loss: 0.6328 - accuracy: 0.7994 - val_loss: 0.5993 - val_accuracy: 0.9032
- Epoch 58/100
- 3/3 [==============================] - 0s 11ms/step - loss: 0.6310 - accuracy: 0.7994 - val_loss: 0.5978 - val_accuracy: 0.9032
- Epoch 59/100
- 3/3 [==============================] - 0s 10ms/step - loss: 0.6297 - accuracy: 0.8034 - val_loss: 0.5962 - val_accuracy: 0.9032
- Epoch 60/100
- 3/3 [==============================] - 0s 11ms/step - loss: 0.6304 - accuracy: 0.7945 - val_loss: 0.5946 - val_accuracy: 0.9032
- Epoch 61/100
- 3/3 [==============================] - 0s 11ms/step - loss: 0.6256 - accuracy: 0.8023 - val_loss: 0.5930 - val_accuracy: 0.9032
- Epoch 62/100
- 3/3 [==============================] - 0s 13ms/step - loss: 0.6312 - accuracy: 0.7883 - val_loss: 0.5915 - val_accuracy: 0.9032
- Epoch 63/100
- 3/3 [==============================] - 0s 10ms/step - loss: 0.6247 - accuracy: 0.8147 - val_loss: 0.5899 - val_accuracy: 0.9032
- Epoch 64/100
- 3/3 [==============================] - 0s 11ms/step - loss: 0.6240 - accuracy: 0.8059 - val_loss: 0.5884 - val_accuracy: 0.9032
- Epoch 65/100
- 3/3 [==============================] - 0s 10ms/step - loss: 0.6280 - accuracy: 0.7981 - val_loss: 0.5869 - val_accuracy: 0.9032
- Epoch 66/100
- 3/3 [==============================] - 0s 11ms/step - loss: 0.6249 - accuracy: 0.8069 - val_loss: 0.5854 - val_accuracy: 0.9032
- Epoch 67/100
- 3/3 [==============================] - 0s 11ms/step - loss: 0.6244 - accuracy: 0.7932 - val_loss: 0.5838 - val_accuracy: 0.9032
- Epoch 68/100
- 3/3 [==============================] - 0s 10ms/step - loss: 0.6209 - accuracy: 0.8137 - val_loss: 0.5822 - val_accuracy: 0.9032
- Epoch 69/100
- 3/3 [==============================] - 0s 11ms/step - loss: 0.6193 - accuracy: 0.8059 - val_loss: 0.5806 - val_accuracy: 0.9032
- Epoch 70/100
- 3/3 [==============================] - 0s 10ms/step - loss: 0.6199 - accuracy: 0.8020 - val_loss: 0.5790 - val_accuracy: 0.9032
- Epoch 71/100
- 3/3 [==============================] - 0s 10ms/step - loss: 0.6185 - accuracy: 0.8097 - val_loss: 0.5774 - val_accuracy: 0.9032
- Epoch 72/100
- 3/3 [==============================] - 0s 10ms/step - loss: 0.6165 - accuracy: 0.8126 - val_loss: 0.5759 - val_accuracy: 0.9032
- Epoch 73/100
- 3/3 [==============================] - 0s 10ms/step - loss: 0.6126 - accuracy: 0.8253 - val_loss: 0.5744 - val_accuracy: 0.9032
- Epoch 74/100
- 3/3 [==============================] - 0s 11ms/step - loss: 0.6141 - accuracy: 0.8214 - val_loss: 0.5729 - val_accuracy: 0.9032
- Epoch 75/100
- 3/3 [==============================] - 0s 10ms/step - loss: 0.6150 - accuracy: 0.8077 - val_loss: 0.5713 - val_accuracy: 0.9032
- Epoch 76/100
- 3/3 [==============================] - 0s 11ms/step - loss: 0.6177 - accuracy: 0.7980 - val_loss: 0.5698 - val_accuracy: 0.9032
- Epoch 77/100
- 3/3 [==============================] - 0s 10ms/step - loss: 0.6156 - accuracy: 0.8048 - val_loss: 0.5682 - val_accuracy: 0.9032
- Epoch 78/100
- 3/3 [==============================] - 0s 10ms/step - loss: 0.6132 - accuracy: 0.8068 - val_loss: 0.5666 - val_accuracy: 0.9032
- Epoch 79/100
- 3/3 [==============================] - 0s 9ms/step - loss: 0.6120 - accuracy: 0.8146 - val_loss: 0.5650 - val_accuracy: 0.9032
- Epoch 80/100
- 3/3 [==============================] - 0s 9ms/step - loss: 0.6077 - accuracy: 0.8136 - val_loss: 0.5635 - val_accuracy: 0.9032
- Epoch 81/100
- 3/3 [==============================] - 0s 10ms/step - loss: 0.6121 - accuracy: 0.8009 - val_loss: 0.5620 - val_accuracy: 0.9032
- Epoch 82/100
- 3/3 [==============================] - 0s 11ms/step - loss: 0.6085 - accuracy: 0.8087 - val_loss: 0.5604 - val_accuracy: 0.9032
- Epoch 83/100
- 3/3 [==============================] - 0s 10ms/step - loss: 0.6060 - accuracy: 0.8136 - val_loss: 0.5587 - val_accuracy: 0.9032
- Epoch 84/100
- 3/3 [==============================] - 0s 12ms/step - loss: 0.6073 - accuracy: 0.8010 - val_loss: 0.5571 - val_accuracy: 0.9032
- Epoch 85/100
- 3/3 [==============================] - 0s 9ms/step - loss: 0.6042 - accuracy: 0.8088 - val_loss: 0.5553 - val_accuracy: 0.9032
- Epoch 86/100
- 3/3 [==============================] - 0s 13ms/step - loss: 0.6068 - accuracy: 0.7950 - val_loss: 0.5535 - val_accuracy: 0.9032
- Epoch 87/100
- 3/3 [==============================] - 0s 10ms/step - loss: 0.6001 - accuracy: 0.8136 - val_loss: 0.5516 - val_accuracy: 0.9032
- Epoch 88/100
- 3/3 [==============================] - 0s 10ms/step - loss: 0.5991 - accuracy: 0.8048 - val_loss: 0.5498 - val_accuracy: 0.9032
- Epoch 89/100
- 3/3 [==============================] - 0s 11ms/step - loss: 0.5977 - accuracy: 0.8107 - val_loss: 0.5481 - val_accuracy: 0.9032
- Epoch 90/100
- 3/3 [==============================] - 0s 10ms/step - loss: 0.5990 - accuracy: 0.7970 - val_loss: 0.5465 - val_accuracy: 0.9032
- Epoch 91/100
- 3/3 [==============================] - 0s 9ms/step - loss: 0.5981 - accuracy: 0.8165 - val_loss: 0.5448 - val_accuracy: 0.9032
- Epoch 92/100
- 3/3 [==============================] - 0s 10ms/step - loss: 0.5960 - accuracy: 0.8213 - val_loss: 0.5431 - val_accuracy: 0.9032
- Epoch 93/100
- 3/3 [==============================] - 0s 10ms/step - loss: 0.5971 - accuracy: 0.8126 - val_loss: 0.5413 - val_accuracy: 0.9032
- Epoch 94/100
- 3/3 [==============================] - 0s 11ms/step - loss: 0.5944 - accuracy: 0.8115 - val_loss: 0.5395 - val_accuracy: 0.9032
- Epoch 95/100
- 3/3 [==============================] - 0s 10ms/step - loss: 0.5964 - accuracy: 0.8066 - val_loss: 0.5376 - val_accuracy: 0.9032
- Epoch 96/100
- 3/3 [==============================] - 0s 9ms/step - loss: 0.5940 - accuracy: 0.8165 - val_loss: 0.5357 - val_accuracy: 0.9032
- Epoch 97/100
- 3/3 [==============================] - 0s 9ms/step - loss: 0.5911 - accuracy: 0.8087 - val_loss: 0.5338 - val_accuracy: 0.9032
- Epoch 98/100
- 3/3 [==============================] - 0s 8ms/step - loss: 0.5889 - accuracy: 0.8125 - val_loss: 0.5319 - val_accuracy: 0.9032
- Epoch 99/100
- 3/3 [==============================] - 0s 9ms/step - loss: 0.5901 - accuracy: 0.8096 - val_loss: 0.5299 - val_accuracy: 0.9032
- Epoch 100/100
- 3/3 [==============================] - 0s 8ms/step - loss: 0.5876 - accuracy: 0.8105 - val_loss: 0.5279 - val_accuracy: 0.9032
-
- Process finished with exit code 0
模型训练结果为:val_accuracy = 90.32%
- import matplotlib.pyplot as plt
-
- acc = history.history['accuracy']
- val_acc = history.history['val_accuracy']
-
- loss = history.history['loss']
- val_loss = history.history['val_loss']
-
- epochs_range = range(epochs)
-
- plt.figure(figsize=(14, 4))
- plt.subplot(1, 2, 1)
-
- plt.plot(epochs_range, acc, label='Training Accuracy-Adam')
- plt.plot(epochs_range, val_acc, label='Validation Accuracy-Adam')
- plt.legend(loc='lower right')
- plt.title('Training and Validation Accuracy')
-
-
- plt.subplot(1, 2, 2)
- plt.plot(epochs_range, loss, label='Training Loss-Adam')
- plt.plot(epochs_range, val_loss, label='Validation Loss-Adam')
- plt.legend(loc='upper right')
- plt.title('Training and Validation Loss')
-
- plt.show()
得到的可视化结果:

本项目为通过RNN来实现心脏病的预测,需要根据给定的CSV文件来实现该目标。由于CSV为表格类文件,故可能存在数据缺失的情况,这与之前的图片类数据有明显的差异,因此在进入网络模型训练前需要针对表格中的数据做一定的处理,由于初次接触表格数据,故只完成了数据是否为0的检查,之后的学习过程中将完善异常值处理等其他数据操作。