• Python和C++音调音符规划和算法


    🎯要点

    1. 🎯音符表征和代码实现:🖊半音位置和索引之间的转换 | 🖊全音阶音调表征 | 🖊全音阶缓存 | 🖊全音阶音高表征。🎯音程表征和代码实现:🖊音程质量 | 🖊计算开始和结束音高。🎯情态和音调和代码实现:🖊创建情态:全音阶调式、五声音阶、八音调态、全音调态、布鲁斯调式 | 🖊构建模态 | 🖊音调表征 | 🖊生成基于音高的音阶。🎯音符时长代码实现:🖊时间线转换算法 | 🖊节拍时间转换算法 | 🖊全音符时间表征 | 🖊位置和时长算子 | 🖊节拍位置 | 🖊拍号和节奏 | 🖊时间转换算法。🎯音符及其连音代码实现:🖊梁和连音定义 | 🖊反转旋律的算法。🎯和弦代码实现:🖊文本规范构建和弦 | 🖊三级和弦 | 🖊次和弦 | 🖊四和弦 。🎯乐器模型代码实现:🖊演奏记号列表。🎯乐谱表征和代码实现:🖊声音中的嵌套音符 | 🖊节奏、节拍和调号序列 | 🖊基于时间的音符搜索方式:红黑树方式、音程树方式 | 🖊事件和观察者模式更新音程树。🎯MIDI 表征和代码实现:🖊MIDI消息定义 | 🖊乐谱和MIDI文件转换算法 | 🖊音符转换为MIDI文件。🎯音调约束规划 | 🎯音调移位变换 | 🎯旋律反转变换和重塑 | 🎯和声转录 | 🎯逆转旋律。
    2. 🎯音乐合成:🖊节拍自定义:🖊使用底鼓、军鼓和踩镲 | 🖊旋律创建:🖊贝多芬《致爱丽丝》混音版 | 🖊和弦创建:🖊观察音色、和声和时间的细微变化 | 🖊音阶、调和旋律构建 | 🖊全音阶和弦 | 🖊傅里叶变换创建音效 | 🖊 基于音符的音效 | 🖊歌曲编辑。
    3. 🎯Python数字声音合成 | 🎯C++数字声音合成

    🍇C++多抽头混响音效

    混响与延迟类似,都为声音添加了回声。 不过,它的不同之处在于,延迟会添加一个回声(即使该回声会重复出现,每次都会更安静),而混响会在声音中添加多个回声。 基本上,混响使声音听起来像是在教堂、深洞或小浴室中演奏的。 延迟只会让事情听起来有点回声。

    该技术非常简单。 您有一个样本缓冲区来保存最后 N 个样本,然后当您处理传入样本时,您添加来自延迟缓冲区的多个样本,每个样本乘以不同的音量(幅度)并将其添加到传入样本中以获得输出样本。 然后,您还将该传出样本放入循环缓冲区中当前索引处的混响缓冲区中。

    这是一些关于如何实现它的伪代码:

    
    reverbBuffer[reverbSamples] = 0;
      
    reverbIndex= 0;
      
    for (i = 0; i < numSamples; ++i)
    {
    
      outSample[i] = inSample[i];
      for (j = 0; j < numTaps; ++j)
        outSample[i] += reverbBuffer[reverbIndex - taps[j].tapTime] * taps[j].feedbackMultiplier; 
      
    
      reverbBuffer[reverbIndex] = outSample[i];
      
    
      reverbIndex++;
      if (reverbIndex>= reverbSamples)
        reverbIndex= 0;
    }
    
    • 1
    • 2
    • 3
    • 4
    • 5
    • 6
    • 7
    • 8
    • 9
    • 10
    • 11
    • 12
    • 13
    • 14
    • 15
    • 16
    • 17
    • 18
    • 19
    • 20

    在下面的示例代码以及上面的混响处理示例中,以下是所使用的拍子的时间和幅度。幅度以 dB 和幅度的形式给出,因此您可以看到您更喜欢的那个。
     Time (ms)  d B  Amplitude  79 − 25 0.0562 130 − 23 0.0707 230 − 15 0.1778 340 − 23 0.0707 470 − 17 0.1412 532 − 21 0.0891 662 − 13 0.2238  Time (ms) dB Amplitude 79250.0562130230.0707230150.1778340230.0707470170.1412532210.0891662130.2238  Time (ms) 79130230340470532662dB25231523172113 Amplitude 0.05620.07070.17780.07070.14120.08910.2238
    通过更多的努力,您可能会想出一些更好的抽头值来使混响听起来更好。下面的示例代码加载 in.wav,使用上面提到的 Tap 对其进行处理,并将其写出为 out.wav。 与往常一样,波形加载代码对于某些波形格式存在一些问题。

    #define _CRT_SECURE_NO_WARNINGS
     
    #include 
    #include 
    #include 
    #include 
    #include 
    #include 
     
    #define _USE_MATH_DEFINES
    #include 
    
    template 
    struct SNumeric
    {
    public:
        explicit SNumeric(const T &value) : m_value(value) { }
        SNumeric() : m_value() { }
        inline T& Value() { return m_value; }
        inline const T& Value() const { return m_value; }
     
        typedef SNumeric TType;
        typedef T TInnerType;
     
        // Math Operations
        TType operator+ (const TType &b) const
        {
            return TType(this->Value() + b.Value());
        }
     
        TType operator- (const TType &b) const
        {
            return TType(this->Value() - b.Value());
        }
     
        TType operator* (const TType &b) const
        {
            return TType(this->Value() * b.Value());
        }
     
        TType operator/ (const TType &b) const
        {
            return TType(this->Value() / b.Value());
        }
     
        TType& operator+= (const TType &b)
        {
            Value() += b.Value();
            return *this;
        }
     
        TType& operator-= (const TType &b)
        {
            Value() -= b.Value();
            return *this;
        }
     
        TType& operator*= (const TType &b)
        {
            Value() *= b.Value();
            return *this;
        }
     
        TType& operator/= (const TType &b)
        {
            Value() /= b.Value();
            return *this;
        }
     
        TType& operator++ ()
        {
            Value()++;
            return *this;
        }
     
        TType& operator-- ()
        {
            Value()--;
            return *this;
        }
     
        // Extended Math Operations
        template 
        T Divide(const TType &b)
        {
            return ((T)this->Value()) / ((T)b.Value());
        }
     
        // Logic Operations
        bool operator< (const TType &b) const {
            return this->Value() < b.Value();
        }
        bool operator<= (const TType &b) const {
            return this->Value() <= b.Value();
        }
        bool operator> (const TType &b) const {
            return this->Value() > b.Value();
        }
        bool operator>= (const TType &b) const {
            return this->Value() >= b.Value();
        }
        bool operator== (const TType &b) const {
            return this->Value() == b.Value();
        }
        bool operator!= (const TType &b) const {
            return this->Value() != b.Value();
        }
     
    private:
        T m_value;
    };
     
     
    typedef uint8_t uint8;
    typedef uint16_t uint16;
    typedef uint32_t uint32;
    typedef int16_t int16;
    typedef int32_t int32;
     
    typedef SNumeric      TFrequency;
    typedef SNumeric        TTimeMs;
    typedef SNumeric       TSamples;
    typedef SNumeric   TFractionalSamples;
    typedef SNumeric       TDecibels;
    typedef SNumeric      TAmplitude;
    typedef SNumeric          TPhase;
     
     
    static const float c_pi = (float)M_PI;
    static const float c_twoPi = c_pi * 2.0f;
     
    //=====================================================================================
    // Structs
    //=====================================================================================
     
    struct SSoundSettings
    {
        TSamples        m_sampleRate;
        TTimeMs         m_lengthMs;
        TSamples        m_currentSample;
    };
     
     
    struct SReverbTap
    {
        TSamples    m_timeOffset;
        TAmplitude  m_feedback;
    };
     
    class CMultitapReverb
    {
    public:
        CMultitapReverb(const std::vector& taps)
            : m_sampleIndex(0)
        {
    
            m_taps = taps;
            TSamples largestTimeOffset(0);
            std::for_each(m_taps.begin(), m_taps.end(),
                [&largestTimeOffset](const SReverbTap& tap)
                {
                    if (tap.m_timeOffset > largestTimeOffset)
                        largestTimeOffset = tap.m_timeOffset;
                }
            );
    
            if (largestTimeOffset.Value() == 0)
                return;
     
            m_samples.resize(largestTimeOffset.Value()+1);
            std::fill(m_samples.begin(), m_samples.end(), TAmplitude(0.0f));
        }
     
        TAmplitude ProcessSample(TAmplitude sample)
        {
    
            if (m_samples.size() == 0)
                return sample;
    
            TAmplitude outSample = sample;
            std::for_each(m_taps.begin(), m_taps.end(),
                [&outSample, this](const SReverbTap& tap)
                {
                    size_t tapSampleIndex;
                    if (tap.m_timeOffset.Value() > m_sampleIndex)
                        tapSampleIndex = m_samples.size() - 1 - (tap.m_timeOffset.Value() - m_sampleIndex);
                    else
                        tapSampleIndex = m_sampleIndex - tap.m_timeOffset.Value();
     
                    outSample += m_samples[tapSampleIndex] * tap.m_feedback;
                }
            );
     
            m_samples[m_sampleIndex] = outSample;
     
            m_sampleIndex++;
            if (m_sampleIndex >= m_samples.size())
                m_sampleIndex = 0;
     
            return outSample;
        }
     
    private:
        std::vector m_taps;
        std::vector m_samples;
        size_t                  m_sampleIndex;
    };
     
    inline TDecibels AmplitudeToDB(TAmplitude volume)
    {
        return TDecibels(log10(volume.Value()));
    }
     
    inline TAmplitude DBToAmplitude(TDecibels dB)
    {
        return TAmplitude(pow(10.0f, dB.Value() / 20.0f));
    }
     
    TSamples SecondsToSamples(const SSoundSettings &s, float seconds)
    {
        return TSamples((int)(seconds * (float)s.m_sampleRate.Value()));
    }
     
    TSamples MilliSecondsToSamples(const SSoundSettings &s, float milliseconds)
    {
        return SecondsToSamples(s, milliseconds / 1000.0f);
    }
     
    TTimeMs SecondsToMilliseconds(float seconds)
    {
        return TTimeMs((uint32)(seconds * 1000.0f));
    }
     
    TFrequency Frequency(float octave, float note)
    {
    
        return TFrequency((float)(440 * pow(2.0, ((double)((octave - 4) * 12 + note)) / 12.0)));
    }
     
    template 
    T AmplitudeToAudioSample(const TAmplitude& in)
    {
        const T c_min = std::numeric_limits::min();
        const T c_max = std::numeric_limits::max();
        const float c_minFloat = (float)c_min;
        const float c_maxFloat = (float)c_max;
     
        float ret = in.Value() * c_maxFloat;
     
        if (ret < c_minFloat)
            return c_min;
     
        if (ret > c_maxFloat)
            return c_max;
     
        return (T)ret;
    }
     
    TAmplitude GetLerpedAudioSample(const std::vector& samples, TFractionalSamples& index)
    {
        uint32 a = (uint32)floor(index.Value());
        uint32 b = a + 1;
        float fract = index.Value() - floor(index.Value());
     
        float ampA = 0.0f;
        if (a >= 0 && a < samples.size())
            ampA = samples[a].Value();
     
        float ampB = 0.0f;
        if (b >= 0 && b < samples.size())
            ampB = samples[b].Value();
     
        return TAmplitude(fract * ampB + (1.0f - fract) * ampA);
    }
     
    void NormalizeSamples(std::vector& samples, TAmplitude maxAmplitude)
    {
    
        if (samples.size() == 0)
            return;
     
        TAmplitude largestAbsVal = TAmplitude(abs(samples.front().Value()));
        std::for_each(samples.begin() + 1, samples.end(), [&largestAbsVal](const TAmplitude &a)
        {
            TAmplitude absVal = TAmplitude(abs(a.Value()));
            if (absVal > largestAbsVal)
                largestAbsVal = absVal;
        }
        );
     
    
        largestAbsVal /= maxAmplitude;
        if (largestAbsVal <= TAmplitude(0.0f))
            return;
     
        std::for_each(samples.begin(), samples.end(), [&largestAbsVal](TAmplitude &a)
        {
            a /= largestAbsVal;
     
            if (a >= TAmplitude(1.0f))
            {
                int ijkl = 0;
            }
        }
        );
    }
     
    void ResampleData(std::vector& samples, int srcSampleRate, int destSampleRate)
    {
    
        if (srcSampleRate == destSampleRate)
            return;
     
        float fResampleRatio = (float)destSampleRate / (float)srcSampleRate;
     
        int nNewDataNumSamples = (int)((float)samples.size() * fResampleRatio);
     
        std::vector newSamples;
        newSamples.resize(nNewDataNumSamples);
     
        for (int nIndex = 0; nIndex < nNewDataNumSamples; ++nIndex)
            newSamples[nIndex] = GetLerpedAudioSample(samples, TFractionalSamples((float)nIndex / fResampleRatio));
     
    
        std::swap(samples, newSamples);
    }
     
    void ChangeNumChannels(std::vector& samples, int nSrcChannels, int nDestChannels)
    {
    
        if (nSrcChannels == nDestChannels ||
            nSrcChannels < 1 || nSrcChannels > 2 ||
            nDestChannels < 1 || nDestChannels > 2)
        {
            return;
        }
     
        if (nDestChannels == 2)
        {
            std::vector newSamples;
            newSamples.resize(samples.size() * 2);
            for (size_t index = 0; index < samples.size(); ++index)
            {
                newSamples[index * 2] = samples[index];
                newSamples[index * 2 + 1] = samples[index];
            }
     
            std::swap(samples, newSamples);
        }
    
        else
        {
            std::vector newSamples;
            newSamples.resize(samples.size() / 2);
            for (size_t index = 0; index < samples.size() / 2; ++index)
                newSamples[index] = samples[index * 2] + samples[index * 2 + 1];
     
            std::swap(samples, newSamples);
        }
    }
     
    float PCMToFloat(unsigned char *pPCMData, int nNumBytes)
    {
        switch (nNumBytes)
        {
        case 1:
        {
            uint8 data = pPCMData[0];
            return (float)data / 255.0f;
        }
        case 2:
        {
            int16 data = pPCMData[1] << 8 | pPCMData[0];
            return ((float)data) / ((float)0x00007fff);
        }
        case 3:
        {
            int32 data = pPCMData[2] << 16 | pPCMData[1] << 8 | pPCMData[0];
            return ((float)data) / ((float)0x007fffff);
        }
        case 4:
        {
            int32 data = pPCMData[3] << 24 | pPCMData[2] << 16 | pPCMData[1] << 8 | pPCMData[0];
            return ((float)data) / ((float)0x7fffffff);
        }
        default:
        {
            return 0.0f;
        }
        }
    }
     
    struct SMinimalWaveFileHeader
    {
    
        unsigned char m_szChunkID[4];      //0
        uint32        m_nChunkSize;        //4
        unsigned char m_szFormat[4];       //8
    
        unsigned char m_szSubChunk1ID[4];  //12
        uint32        m_nSubChunk1Size;    //16
        uint16        m_nAudioFormat;      //18
        uint16        m_nNumChannels;      //20
        uint32        m_nSampleRate;       //24
        uint32        m_nByteRate;         //28
        uint16        m_nBlockAlign;       //30
        uint16        m_nBitsPerSample;    //32
     
        unsigned char m_szSubChunk2ID[4];  //36
        uint32        m_nSubChunk2Size;    //40
     
    
    };
     
    
    template 
    bool WriteWaveFile(const char *fileName, const std::vector &samples, const SSoundSettings &sound)
    {
        //open the file if we can
        FILE *file = fopen(fileName, "w+b");
        if (!file)
            return false;
     
        //calculate bits per sample and the data size
        const int32 bitsPerSample = sizeof(T) * 8;
        const int dataSize = samples.size() * sizeof(T);
     
        SMinimalWaveFileHeader waveHeader;
     
        //fill out the main chunk
        memcpy(waveHeader.m_szChunkID, "RIFF", 4);
        waveHeader.m_nChunkSize = dataSize + 36;
        memcpy(waveHeader.m_szFormat, "WAVE", 4);
     
        //fill out sub chunk 1 "fmt "
        memcpy(waveHeader.m_szSubChunk1ID, "fmt ", 4);
        waveHeader.m_nSubChunk1Size = 16;
        waveHeader.m_nAudioFormat = 1;
        waveHeader.m_nNumChannels = 1;
        waveHeader.m_nSampleRate = sound.m_sampleRate.Value();
        waveHeader.m_nByteRate = sound.m_sampleRate.Value() * 1 * bitsPerSample / 8;
        waveHeader.m_nBlockAlign = 1 * bitsPerSample / 8;
        waveHeader.m_nBitsPerSample = bitsPerSample;
     
        //fill out sub chunk 2 "data"
        memcpy(waveHeader.m_szSubChunk2ID, "data", 4);
        waveHeader.m_nSubChunk2Size = dataSize;
     
        //write the header
        fwrite(&waveHeader, sizeof(SMinimalWaveFileHeader), 1, file);
     
        //write the wave data itself, converting it from float to the type specified
        std::vector outSamples;
        outSamples.resize(samples.size());
        for (size_t index = 0; index < samples.size(); ++index)
            outSamples[index] = AmplitudeToAudioSample(samples[index]);
        fwrite(&outSamples[0], dataSize, 1, file);
     
        //close the file and return success
        fclose(file);
        return true;
    }
     
    
    bool ReadWaveFile(const char *fileName, std::vector& samples, int32 sampleRate)
    {
        //open the file if we can
        FILE *File = fopen(fileName, "rb");
        if (!File)
        {
            return false;
        }
     
        //read the main chunk ID and make sure it's "RIFF"
        char buffer[5];
        buffer[4] = 0;
        if (fread(buffer, 4, 1, File) != 1 || strcmp(buffer, "RIFF"))
        {
            fclose(File);
            return false;
        }
     
        //read the main chunk size
        uint32 nChunkSize;
        if (fread(&nChunkSize, 4, 1, File) != 1)
        {
            fclose(File);
            return false;
        }
     
        //read the format and make sure it's "WAVE"
        if (fread(buffer, 4, 1, File) != 1 || strcmp(buffer, "WAVE"))
        {
            fclose(File);
            return false;
        }
     
        long chunkPosFmt = -1;
        long chunkPosData = -1;
     
        while (chunkPosFmt == -1 || chunkPosData == -1)
        {
            //read a sub chunk id and a chunk size if we can
            if (fread(buffer, 4, 1, File) != 1 || fread(&nChunkSize, 4, 1, File) != 1)
            {
                fclose(File);
                return false;
            }
     
            //if we hit a fmt
            if (!strcmp(buffer, "fmt "))
            {
                chunkPosFmt = ftell(File) - 8;
            }
            //else if we hit a data
            else if (!strcmp(buffer, "data"))
            {
                chunkPosData = ftell(File) - 8;
            }
     
            //skip to the next chunk
            fseek(File, nChunkSize, SEEK_CUR);
        }
     
        //we'll use this handy struct to load in 
        SMinimalWaveFileHeader waveData;
     
        //load the fmt part if we can
        fseek(File, chunkPosFmt, SEEK_SET);
        if (fread(&waveData.m_szSubChunk1ID, 24, 1, File) != 1)
        {
            fclose(File);
            return false;
        }
     
        //load the data part if we can
        fseek(File, chunkPosData, SEEK_SET);
        if (fread(&waveData.m_szSubChunk2ID, 8, 1, File) != 1)
        {
            fclose(File);
            return false;
        }
     
        //verify a couple things about the file data
        if (waveData.m_nAudioFormat != 1 ||       //only pcm data
            waveData.m_nNumChannels < 1 ||        //must have a channel
            waveData.m_nNumChannels > 2 ||        //must not have more than 2
            waveData.m_nBitsPerSample > 32 ||     //32 bits per sample max
            waveData.m_nBitsPerSample % 8 != 0 || //must be a multiple of 8 bites
            waveData.m_nBlockAlign > 8)           //blocks must be 8 bytes or lower
        {
            fclose(File);
            return false;
        }
     
        //figure out how many samples and blocks there are total in the source data
        int nBytesPerBlock = waveData.m_nBlockAlign;
        int nNumBlocks = waveData.m_nSubChunk2Size / nBytesPerBlock;
        int nNumSourceSamples = nNumBlocks * waveData.m_nNumChannels;
     
        //allocate space for the source samples
        samples.resize(nNumSourceSamples);
     
        //maximum size of a block is 8 bytes.  4 bytes per samples, 2 channels
        unsigned char pBlockData[8];
        memset(pBlockData, 0, 8);
     
        //read in the source samples at whatever sample rate / number of channels it might be in
        int nBytesPerSample = nBytesPerBlock / waveData.m_nNumChannels;
        for (int nIndex = 0; nIndex < nNumSourceSamples; nIndex += waveData.m_nNumChannels)
        {
            //read in a block
            if (fread(pBlockData, waveData.m_nBlockAlign, 1, File) != 1)
            {
                fclose(File);
                return false;
            }
     
            //get the first sample
            samples[nIndex].Value() = PCMToFloat(pBlockData, nBytesPerSample);
     
            //get the second sample if there is one
            if (waveData.m_nNumChannels == 2)
            {
                samples[nIndex + 1].Value() = PCMToFloat(&pBlockData[nBytesPerSample], nBytesPerSample);
            }
        }
     
        //re-sample the sample rate up or down as needed
        ResampleData(samples, waveData.m_nSampleRate, sampleRate);
     
        //handle switching from mono to stereo or vice versa
        ChangeNumChannels(samples, waveData.m_nNumChannels, 1);
     
        return true;
    }
     
    
    • 1
    • 2
    • 3
    • 4
    • 5
    • 6
    • 7
    • 8
    • 9
    • 10
    • 11
    • 12
    • 13
    • 14
    • 15
    • 16
    • 17
    • 18
    • 19
    • 20
    • 21
    • 22
    • 23
    • 24
    • 25
    • 26
    • 27
    • 28
    • 29
    • 30
    • 31
    • 32
    • 33
    • 34
    • 35
    • 36
    • 37
    • 38
    • 39
    • 40
    • 41
    • 42
    • 43
    • 44
    • 45
    • 46
    • 47
    • 48
    • 49
    • 50
    • 51
    • 52
    • 53
    • 54
    • 55
    • 56
    • 57
    • 58
    • 59
    • 60
    • 61
    • 62
    • 63
    • 64
    • 65
    • 66
    • 67
    • 68
    • 69
    • 70
    • 71
    • 72
    • 73
    • 74
    • 75
    • 76
    • 77
    • 78
    • 79
    • 80
    • 81
    • 82
    • 83
    • 84
    • 85
    • 86
    • 87
    • 88
    • 89
    • 90
    • 91
    • 92
    • 93
    • 94
    • 95
    • 96
    • 97
    • 98
    • 99
    • 100
    • 101
    • 102
    • 103
    • 104
    • 105
    • 106
    • 107
    • 108
    • 109
    • 110
    • 111
    • 112
    • 113
    • 114
    • 115
    • 116
    • 117
    • 118
    • 119
    • 120
    • 121
    • 122
    • 123
    • 124
    • 125
    • 126
    • 127
    • 128
    • 129
    • 130
    • 131
    • 132
    • 133
    • 134
    • 135
    • 136
    • 137
    • 138
    • 139
    • 140
    • 141
    • 142
    • 143
    • 144
    • 145
    • 146
    • 147
    • 148
    • 149
    • 150
    • 151
    • 152
    • 153
    • 154
    • 155
    • 156
    • 157
    • 158
    • 159
    • 160
    • 161
    • 162
    • 163
    • 164
    • 165
    • 166
    • 167
    • 168
    • 169
    • 170
    • 171
    • 172
    • 173
    • 174
    • 175
    • 176
    • 177
    • 178
    • 179
    • 180
    • 181
    • 182
    • 183
    • 184
    • 185
    • 186
    • 187
    • 188
    • 189
    • 190
    • 191
    • 192
    • 193
    • 194
    • 195
    • 196
    • 197
    • 198
    • 199
    • 200
    • 201
    • 202
    • 203
    • 204
    • 205
    • 206
    • 207
    • 208
    • 209
    • 210
    • 211
    • 212
    • 213
    • 214
    • 215
    • 216
    • 217
    • 218
    • 219
    • 220
    • 221
    • 222
    • 223
    • 224
    • 225
    • 226
    • 227
    • 228
    • 229
    • 230
    • 231
    • 232
    • 233
    • 234
    • 235
    • 236
    • 237
    • 238
    • 239
    • 240
    • 241
    • 242
    • 243
    • 244
    • 245
    • 246
    • 247
    • 248
    • 249
    • 250
    • 251
    • 252
    • 253
    • 254
    • 255
    • 256
    • 257
    • 258
    • 259
    • 260
    • 261
    • 262
    • 263
    • 264
    • 265
    • 266
    • 267
    • 268
    • 269
    • 270
    • 271
    • 272
    • 273
    • 274
    • 275
    • 276
    • 277
    • 278
    • 279
    • 280
    • 281
    • 282
    • 283
    • 284
    • 285
    • 286
    • 287
    • 288
    • 289
    • 290
    • 291
    • 292
    • 293
    • 294
    • 295
    • 296
    • 297
    • 298
    • 299
    • 300
    • 301
    • 302
    • 303
    • 304
    • 305
    • 306
    • 307
    • 308
    • 309
    • 310
    • 311
    • 312
    • 313
    • 314
    • 315
    • 316
    • 317
    • 318
    • 319
    • 320
    • 321
    • 322
    • 323
    • 324
    • 325
    • 326
    • 327
    • 328
    • 329
    • 330
    • 331
    • 332
    • 333
    • 334
    • 335
    • 336
    • 337
    • 338
    • 339
    • 340
    • 341
    • 342
    • 343
    • 344
    • 345
    • 346
    • 347
    • 348
    • 349
    • 350
    • 351
    • 352
    • 353
    • 354
    • 355
    • 356
    • 357
    • 358
    • 359
    • 360
    • 361
    • 362
    • 363
    • 364
    • 365
    • 366
    • 367
    • 368
    • 369
    • 370
    • 371
    • 372
    • 373
    • 374
    • 375
    • 376
    • 377
    • 378
    • 379
    • 380
    • 381
    • 382
    • 383
    • 384
    • 385
    • 386
    • 387
    • 388
    • 389
    • 390
    • 391
    • 392
    • 393
    • 394
    • 395
    • 396
    • 397
    • 398
    • 399
    • 400
    • 401
    • 402
    • 403
    • 404
    • 405
    • 406
    • 407
    • 408
    • 409
    • 410
    • 411
    • 412
    • 413
    • 414
    • 415
    • 416
    • 417
    • 418
    • 419
    • 420
    • 421
    • 422
    • 423
    • 424
    • 425
    • 426
    • 427
    • 428
    • 429
    • 430
    • 431
    • 432
    • 433
    • 434
    • 435
    • 436
    • 437
    • 438
    • 439
    • 440
    • 441
    • 442
    • 443
    • 444
    • 445
    • 446
    • 447
    • 448
    • 449
    • 450
    • 451
    • 452
    • 453
    • 454
    • 455
    • 456
    • 457
    • 458
    • 459
    • 460
    • 461
    • 462
    • 463
    • 464
    • 465
    • 466
    • 467
    • 468
    • 469
    • 470
    • 471
    • 472
    • 473
    • 474
    • 475
    • 476
    • 477
    • 478
    • 479
    • 480
    • 481
    • 482
    • 483
    • 484
    • 485
    • 486
    • 487
    • 488
    • 489
    • 490
    • 491
    • 492
    • 493
    • 494
    • 495
    • 496
    • 497
    • 498
    • 499
    • 500
    • 501
    • 502
    • 503
    • 504
    • 505
    • 506
    • 507
    • 508
    • 509
    • 510
    • 511
    • 512
    • 513
    • 514
    • 515
    • 516
    • 517
    • 518
    • 519
    • 520
    • 521
    • 522
    • 523
    • 524
    • 525
    • 526
    • 527
    • 528
    • 529
    • 530
    • 531
    • 532
    • 533
    • 534
    • 535
    • 536
    • 537
    • 538
    • 539
    • 540
    • 541
    • 542
    • 543
    • 544
    • 545
    • 546
    • 547
    • 548
    • 549
    • 550
    • 551
    • 552
    • 553
    • 554
    • 555
    • 556
    • 557
    • 558
    • 559
    • 560
    • 561
    • 562
    • 563
    • 564
    • 565
    • 566
    • 567
    • 568
    • 569
    • 570
    • 571
    • 572
    • 573
    • 574
    • 575
    • 576
    • 577
    • 578
    • 579
    • 580
    • 581
    • 582
    • 583
    • 584
    • 585
    • 586
    • 587
    • 588
    • 589
    • 590
    • 591
    • 592
    • 593
    • 594
    • 595
    • 596
    • 597

    参阅一:计算思维

    参阅二:亚图跨际

  • 相关阅读:
    JS知识点,持续更新
    湖仓一体电商项目(九):业务实现之编写写入DIM层业务代码
    TypeError: ‘dict‘ object is not callable in Python
    操作系统第二章第二周练习
    Vue3.2开发一个博客Demo项目
    如何搭建Nacos集群
    买卖股票的最佳时机含冷冻期
    动态头像如何制作?这个方法请收藏
    Windows安装配置Rust(附CLion配置与运行)
    java毕业设计宠物咖啡馆平台系统mybatis+源码+调试部署+系统+数据库+lw
  • 原文地址:https://blog.csdn.net/jiyotin/article/details/138195016