引自免费微信小程序:皆我百晓生
为了实现Kruskal算法,我们首先需要定义一些数据结构:一个表示边的结构体、一个用于排序的优先队列以及一个表示集合的数据结构(这里我们可以选择并查集)。接下来,我们将编写实现这些功能的函数,并最终完成Kruskal算法的主要部分。
以下是C语言代码实现:
#include
#include
#include
#define MAX_NODES 100
#define INF 99999
// 边的结构体
typedef struct Edge {
int src, dest;
int weight;
} Edge;
// 优先队列(使用最小堆)
typedef struct MinHeap {
int capacity;
int size;
Edge* heap[MAX_NODES];
} MinHeap;
// 并查集
typedef struct UnionFind {
int parent[MAX_NODES];
} UnionFind;
void init_uf(UnionFind* uf) {
for (int i = 0; i < MAX_NODES; ++i) {
uf->parent[i] = i;
}
}
int find(UnionFind* uf, int node) {
if (uf->parent[node] != node) {
uf->parent[node] = find(uf, uf->parent[node]);
}
return uf->parent[node];
}
void union_set(UnionFind* uf, int x, int y) {
int rootX = find(uf, x);
int rootY = find(uf, y);
if (rootX != rootY) {
uf->parent[rootX] = rootY;
}
}
void insert_heap(MinHeap* heap, Edge edge) {
heap->heap[heap->size++] = edge;
int curr = heap->size - 1;
while (curr > 0 && heap->heap[curr].weight < heap->heap[(curr - 1) / 2].weight) {
Edge temp = heap->heap[curr];
heap->heap[curr] = heap->heap[(curr - 1) / 2];
heap->heap[(curr - 1) / 2] = temp;
curr = (curr - 1) / 2;
}
}
Edge extract_min(MinHeap* heap) {
Edge min_edge = heap->heap[0];
heap->heap[0] = heap->heap[--heap->size];
int curr = 0;
while (curr * 2 + 1 < heap->size) {
int child = curr * 2 + 1;
if ((child + 1 < heap->size) && heap->heap[child + 1].weight < heap->heap[child].weight) {
child++;
}
if (heap->heap[child].weight <= heap->heap[curr].weight) {
break;
} else {
Edge temp = heap->heap[curr];
heap->heap[curr] = heap->heap[child];
heap->heap[child] = temp;
curr = child;
}
}
return min_edge;
}
void kruskal(int n, Edge edges[], int m) {
int total_cost = 0;
UnionFind uf;
init_uf(&uf);
MinHeap min_heap;
min_heap.capacity = m;
min_heap.size = 0;
for (int i = 0; i < m; ++i) {
insert_heap(&min_heap, edges[i]);
}
while (min_heap.size > 0 && uf.size < n - 1) {
Edge edge = extract_min(&min_heap);
int rootX = find(&uf, edge.src);
int rootY = find(&uf, edge.dest);
if (rootX != rootY) {
total_cost += edge.weight;
union_set(&uf, rootX, rootY);
}
}
printf("Minimum cost to build the高铁 network: %d million yuan\n", total_cost * 3000);
}
int main() {
int n, m;
scanf("%d %d", &n, &m);
Edge edges[m];
// Read the edges and their weights from input
for (int i = 0; i < m; ++i) {
scanf("%d %d", &edges[i].src, &edges[i].dest);
edges[i].weight = abs(edges[i].src - edges[i].dest); // Assuming weights are already given in km
}
kruskal(n, edges, m);
return 0;
}
这段代码实现了Kruskal算法,你需要在main()函数中读取输入数据(城市数量n,边的数量m以及每条边的起始点和终点),然后调用kruskal()函数计算最小生成树的总成本。
注意:这个程序假设了输入已经按照边的权重进行排序。在实际应用中,可能需要先对输入的边进行排序,然后再执行Kruskal算法。在这个例子中,由于权重已经是两城市间的距离,因此不需要额外的排序步骤。
为了测试此代码,你需要提供一个包含城市数量、边的数量以及每条边的起点和终点的输入文件,例如:
4 6
0 1
1 2
2 3
0 2
1 3
3 2
这段输入表示有4个城市(编号为0到3),共6条边。运行程序后,它将输出最小生成树的总成本。

![[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-dBOBBSKx-1584344703730)(/Users/mac/Desktop/计算机基础知识/数据结构与算法/算法/最小生成树/image-20200316131202459.png)]](https://1000bd.com/askImg/2024/04/26/072335854.png)