目录
难度 简单
设计一个找到数据流中第 k 大元素的类(class)。注意是排序后的第 k 大元素,不是第 k 个不同的元素。
请实现 KthLargest 类:
KthLargest(int k, int[] nums) 使用整数 k 和整数流 nums 初始化对象。int add(int val) 将 val 插入数据流 nums 后,返回当前数据流中第 k 大的元素。示例:
输入: ["KthLargest", "add", "add", "add", "add", "add"] [[3, [4, 5, 8, 2]], [3], [5], [10], [9], [4]] 输出: [null, 4, 5, 5, 8, 8] 解释: KthLargest kthLargest = new KthLargest(3, [4, 5, 8, 2]); kthLargest.add(3); // return 4 kthLargest.add(5); // return 5 kthLargest.add(10); // return 5 kthLargest.add(9); // return 8 kthLargest.add(4); // return 8
提示:
1 <= k <= 10^40 <= nums.length <= 10^4-10^4 <= nums[i] <= 10^4-10^4 <= val <= 10^4add 方法 10^4 次k 大元素时,数组中至少有 k 个元素- class KthLargest {
- public:
- KthLargest(int k, vector<int>& nums) {
-
- }
-
- int add(int val) {
-
- }
- };
-
- /**
- * Your KthLargest object will be instantiated and called as such:
- * KthLargest* obj = new KthLargest(k, nums);
- * int param_1 = obj->add(val);
- */
一道TopK 问题:
数据结构与算法⑬(第四章_中_续二)堆解决Topk问题+堆的概念选择题_16,23,53 ,31,94,72为什么是堆-CSDN博客
- class KthLargest
- {
- // 创建⼀个⼤⼩为 k 的⼩跟堆
- priority_queue<int, vector<int>, greater<int>> heap;
- int _k;
-
- public:
- KthLargest(int k, vector<int>& nums)
- : _k(k)
- {
- for(auto& e : nums)
- {
- heap.push(e);
- if(heap.size() > _k)
- {
- heap.pop();
- }
- }
- }
-
- int add(int val)
- {
- heap.push(val);
- if(heap.size() > _k)
- {
- heap.pop();
- }
- return heap.top();
- }
- };
-
- /**
- * Your KthLargest object will be instantiated and called as such:
- * KthLargest* obj = new KthLargest(k, nums);
- * int param_1 = obj->add(val);
- */