目录
C# danbooru Stable Diffusion 提示词反推 Onnx Demo

模型下载地址:https://huggingface.co/deepghs/ml-danbooru-onnx

Model Properties
-------------------------
---------------------------------------------------------------
Inputs
-------------------------
name:input
tensor:Float[-1, 3, -1, -1]
---------------------------------------------------------------
Outputs
-------------------------
name:output
tensor:Float[-1, 12547]
---------------------------------------------------------------

using Microsoft.ML.OnnxRuntime;
using Microsoft.ML.OnnxRuntime.Tensors;
using OpenCvSharp;
using System;
using System.Collections.Generic;
using System.Drawing;
using System.IO;
using System.Linq;
using System.Text;
using System.Windows.Forms;
namespace Onnx_Demo
{
public partial class Form1 : Form
{
public Form1()
{
InitializeComponent();
}
string fileFilter = "*.*|*.bmp;*.jpg;*.jpeg;*.tiff;*.tiff;*.png";
string image_path = "";
DateTime dt1 = DateTime.Now;
DateTime dt2 = DateTime.Now;
string model_path;
Mat image;
SessionOptions options;
InferenceSession onnx_session;
Tensor
List
IDisposableReadOnlyCollection
DisposableNamedOnnxValue[] results_onnxvalue;
Tensor
StringBuilder sb = new StringBuilder();
public string[] class_names;
private void button1_Click(object sender, EventArgs e)
{
OpenFileDialog ofd = new OpenFileDialog();
ofd.Filter = fileFilter;
if (ofd.ShowDialog() != DialogResult.OK) return;
pictureBox1.Image = null;
image_path = ofd.FileName;
pictureBox1.Image = new Bitmap(image_path);
textBox1.Text = "";
image = new Mat(image_path);
}
private void button2_Click(object sender, EventArgs e)
{
if (image_path == "")
{
return;
}
button2.Enabled = false;
textBox1.Text = "";
sb.Clear();
Application.DoEvents();
image = new Mat(image_path);
// 将图片转为RGB通道
Cv2.CvtColor(image, image, ColorConversionCodes.BGR2RGB);
// 输入Tensor
input_tensor = new DenseTensor
// 输入Tensor
for (int y = 0; y < image.Height; y++)
{
for (int x = 0; x < image.Width; x++)
{
input_tensor[0, 0, y, x] = image.At
input_tensor[0, 1, y, x] = image.At
input_tensor[0, 2, y, x] = image.At
}
}
//将 input_tensor 放入一个输入参数的容器,并指定名称
input_container.Add(NamedOnnxValue.CreateFromTensor("input", input_tensor));
dt1 = DateTime.Now;
//运行 Inference 并获取结果
result_infer = onnx_session.Run(input_container);
dt2 = DateTime.Now;
// 将输出结果转为DisposableNamedOnnxValue数组
results_onnxvalue = result_infer.ToArray();
// 读取第一个节点输出并转为Tensor数据
result_tensors = results_onnxvalue[0].AsTensor
var result_array = result_tensors.ToArray();
double[] scores = new double[result_array.Length];
for (int i = 0; i < result_array.Length; i++)
{
double score = 1 / (1 + Math.Exp(result_array[i] * -1));
scores[i] = score;
}
List
ScoreIndex temp;
for (int i = 0; i < scores.Length; i++)
{
temp = new ScoreIndex(i, scores[i]);
ltResult.Add(temp);
}
//根据分数倒序排序,取前10个
var SortedByScore = ltResult.OrderByDescending(p => p.Score).ToList().Take(10);
foreach (var item in SortedByScore)
{
sb.Append(class_names[item.Index] + ",");
}
sb.Length--; // 将长度减1来移除最后一个字符
sb.AppendLine("");
sb.AppendLine("------------------");
// 只取分数最高的
// float max = result_array.Max();
// int maxIndex = Array.IndexOf(result_array, max);
// sb.AppendLine(class_names[maxIndex]+" "+ max.ToString("P2"));
sb.AppendLine("推理耗时:" + (dt2 - dt1).TotalMilliseconds + "ms");
textBox1.Text = sb.ToString();
button2.Enabled = true;
}
private void Form1_Load(object sender, EventArgs e)
{
model_path = "model/ml_danbooru.onnx";
// 创建输出会话,用于输出模型读取信息
options = new SessionOptions();
options.LogSeverityLevel = OrtLoggingLevel.ORT_LOGGING_LEVEL_INFO;
options.AppendExecutionProvider_CPU(0);// 设置为CPU上运行
// 创建推理模型类,读取本地模型文件
onnx_session = new InferenceSession(model_path, options);//model_path 为onnx模型文件的路径
// 创建输入容器
input_container = new List
image_path = "test_img/2.jpg";
pictureBox1.Image = new Bitmap(image_path);
image = new Mat(image_path);
List
StreamReader sr = new StreamReader("model/lable.txt");
string line;
while ((line = sr.ReadLine()) != null)
{
str.Add(line);
}
class_names = str.ToArray();
}
}
}
- using Microsoft.ML.OnnxRuntime;
- using Microsoft.ML.OnnxRuntime.Tensors;
- using OpenCvSharp;
- using System;
- using System.Collections.Generic;
- using System.Drawing;
- using System.IO;
- using System.Linq;
- using System.Text;
- using System.Windows.Forms;
-
- namespace Onnx_Demo
- {
- public partial class Form1 : Form
- {
- public Form1()
- {
- InitializeComponent();
- }
-
- string fileFilter = "*.*|*.bmp;*.jpg;*.jpeg;*.tiff;*.tiff;*.png";
- string image_path = "";
- DateTime dt1 = DateTime.Now;
- DateTime dt2 = DateTime.Now;
- string model_path;
- Mat image;
-
- SessionOptions options;
- InferenceSession onnx_session;
- Tensor<float> input_tensor;
- List<NamedOnnxValue> input_container;
- IDisposableReadOnlyCollection<DisposableNamedOnnxValue> result_infer;
- DisposableNamedOnnxValue[] results_onnxvalue;
-
- Tensor<float> result_tensors;
-
- StringBuilder sb = new StringBuilder();
-
- public string[] class_names;
-
- private void button1_Click(object sender, EventArgs e)
- {
- OpenFileDialog ofd = new OpenFileDialog();
- ofd.Filter = fileFilter;
- if (ofd.ShowDialog() != DialogResult.OK) return;
- pictureBox1.Image = null;
- image_path = ofd.FileName;
- pictureBox1.Image = new Bitmap(image_path);
- textBox1.Text = "";
- image = new Mat(image_path);
- }
-
- private void button2_Click(object sender, EventArgs e)
- {
- if (image_path == "")
- {
- return;
- }
-
- button2.Enabled = false;
- textBox1.Text = "";
- sb.Clear();
- Application.DoEvents();
-
- image = new Mat(image_path);
-
- // 将图片转为RGB通道
- Cv2.CvtColor(image, image, ColorConversionCodes.BGR2RGB);
-
- // 输入Tensor
- input_tensor = new DenseTensor<float>(new[] { 1, 3, image.Height, image.Width });
-
- // 输入Tensor
- for (int y = 0; y < image.Height; y++)
- {
- for (int x = 0; x < image.Width; x++)
- {
- input_tensor[0, 0, y, x] = image.At<Vec3b>(y, x)[0] / 255f;
- input_tensor[0, 1, y, x] = image.At<Vec3b>(y, x)[1] / 255f;
- input_tensor[0, 2, y, x] = image.At<Vec3b>(y, x)[2] / 255f;
- }
- }
-
- //将 input_tensor 放入一个输入参数的容器,并指定名称
- input_container.Add(NamedOnnxValue.CreateFromTensor("input", input_tensor));
-
- dt1 = DateTime.Now;
- //运行 Inference 并获取结果
- result_infer = onnx_session.Run(input_container);
- dt2 = DateTime.Now;
-
- // 将输出结果转为DisposableNamedOnnxValue数组
- results_onnxvalue = result_infer.ToArray();
-
- // 读取第一个节点输出并转为Tensor数据
- result_tensors = results_onnxvalue[0].AsTensor<float>();
-
- var result_array = result_tensors.ToArray();
-
- double[] scores = new double[result_array.Length];
- for (int i = 0; i < result_array.Length; i++)
- {
- double score = 1 / (1 + Math.Exp(result_array[i] * -1));
- scores[i] = score;
- }
-
- List<ScoreIndex> ltResult = new List<ScoreIndex>();
- ScoreIndex temp;
- for (int i = 0; i < scores.Length; i++)
- {
- temp = new ScoreIndex(i, scores[i]);
- ltResult.Add(temp);
- }
-
- //根据分数倒序排序,取前10个
- var SortedByScore = ltResult.OrderByDescending(p => p.Score).ToList().Take(10);
-
- foreach (var item in SortedByScore)
- {
- sb.Append(class_names[item.Index] + ",");
- }
- sb.Length--; // 将长度减1来移除最后一个字符
-
- sb.AppendLine("");
- sb.AppendLine("------------------");
-
- // 只取分数最高的
- // float max = result_array.Max();
- // int maxIndex = Array.IndexOf(result_array, max);
- // sb.AppendLine(class_names[maxIndex]+" "+ max.ToString("P2"));
-
- sb.AppendLine("推理耗时:" + (dt2 - dt1).TotalMilliseconds + "ms");
- textBox1.Text = sb.ToString();
- button2.Enabled = true;
- }
-
- private void Form1_Load(object sender, EventArgs e)
- {
- model_path = "model/ml_danbooru.onnx";
-
- // 创建输出会话,用于输出模型读取信息
- options = new SessionOptions();
- options.LogSeverityLevel = OrtLoggingLevel.ORT_LOGGING_LEVEL_INFO;
- options.AppendExecutionProvider_CPU(0);// 设置为CPU上运行
-
- // 创建推理模型类,读取本地模型文件
- onnx_session = new InferenceSession(model_path, options);//model_path 为onnx模型文件的路径
-
- // 创建输入容器
- input_container = new List<NamedOnnxValue>();
-
- image_path = "test_img/2.jpg";
- pictureBox1.Image = new Bitmap(image_path);
- image = new Mat(image_path);
-
- List<string> str = new List<string>();
- StreamReader sr = new StreamReader("model/lable.txt");
- string line;
- while ((line = sr.ReadLine()) != null)
- {
- str.Add(line);
- }
- class_names = str.ToArray();
- }
-
- }
- }