剪枝1:优先枚举较大的数
剪枝2:排除等效冗余
- import java.util.*;
-
- public class Main{
- static int N = 110, n;
- static int[] path = new int[N];
- static boolean[] st = new boolean[N];
-
- //当前是第几层,最大层数
- public static boolean dfs(int u, int length){
- if(u == length) return path[u - 1] == n;
-
- Arrays.fill(st, false);//每次都要重置,用于冗余性剪枝
- for(int i = u - 1; i >= 0; i --){//从大到小开始枚举,优化搜索顺序
- for(int j = i; j >= 0; j --){
- int s = path[i] + path[j];
- if(s <= n && s > path[u - 1] && !st[s]){
- st[s] = true;
- path[u] = s;
- if(dfs(u + 1, length)) return true;
-
- }
- }
- }
- return false;
- }
-
- public static void main(String[] args){
- Scanner sc = new Scanner(System.in);
- while(true){
- n = sc.nextInt();
- if(n == 0) break;
-
- path[0] = 1;
- int length = 1;//每次往下的深度
- while(!dfs(1, length)) length ++;
-
- for(int i = 0; i < length; i ++){
- System.out.print(path[i] + " ");
- }
- System.out.println();
- }
- }
- }

- import java.util.*;
-
- public class Main{
- //cnt表示前半段的方案数
- static int N = 50, n, m, cnt, k;
- static int[] w = new int[N];
- static int[] weights = new int[1 << 25];//前半段不同的重量组合
- static long ans;//一次能搬运的最大物品重量之和
-
- //翻转数组,经过排序之后,这个函数令从小到大排序变成从大到小排序
- public static void reverse(){
- for(int i = 0; i < n / 2; i ++){
- int temp = w[i];
- w[i] = w[n - 1 - i];
- w[n - 1 - i] = temp;
- }
- }
-
- //数组去重后得到的元素数量
- public static int unique(){
- int t = 0;
- for(int i = 0; i < cnt; i ++){
- if(i == 0 || weights[i] != weights[i - 1]) weights[t ++] = weights[i];
- }
- return t;
- }
-
- //前半段的所有方案:当前枚举到第u个数,总重量为s
- public static void dfs1(int u, int s){
- if(u >= k){
- weights[cnt ++] = s;
- return;
- }
-
- //选当前这个数
- if((long)s + w[u] <= m) dfs1(u + 1, s + w[u]);
-
- //不选当前这个数
- dfs1(u + 1, s);
- }
-
- //遍历第二段,寻找第一段中是否有合适的方案值
- public static void dfs2(int u, int s){
- if(u >= n){
- //二分查找第一段方案与第二段方案加起来小于m的最大值
- int l = 0, r = cnt - 1;
- while(l < r){
- int mid = (l + r + 1) >> 1;
- if((long)weights[mid] + s <= m) l = mid;
- else r = mid - 1;
- }
- if((long)weights[l] + s <= m) ans = Math.max(ans, weights[l] + s);
- return;
- }
-
- //选当前这个数
- if((long)s + w[u] <= m) dfs2(u + 1, s + w[u]);
-
- //不选当前这个数
- dfs2(u + 1, s);
- }
-
- public static void main(String[] args){
- Scanner sc = new Scanner(System.in);
- m = sc.nextInt();//力气最大值
- n = sc.nextInt();//礼物数
-
- for(int i = 0; i < n; i ++){
- w[i] = sc.nextInt();//每件礼物的重量
- }
-
- Arrays.sort(w, 0, n);//排序
- reverse();//翻转
-
- k = n / 2 + 2;//前半段的数
-
- dfs1(0, 0);//找出前半段重量的所有方案,第0个数开始,一开始总重量为0
-
- Arrays.sort(weights, 0, cnt);//排序
- cnt = unique();//前半段方案去重后的数量
-
- dfs2(k, 0);
- System.out.print(ans);
- }
- }
基本思想就是剪枝:对未来所需要的步数进行一个估计(估计值<=真实值)

java的arrayCopy用法_static void arraycopy用法-CSDN博客
- import java.util.*;
-
- public class Main{
- static int N = 15, n;
- static int[] q = new int[N];//书的摆放顺序
- static int[][] w = new int[5][N];//每层的复原数组
-
- //求出错误后继的个数,然后由于每次调换最多修正3个错误后继
- public static int f(){
- int tot = 0;
- for(int i = 0; i < n - 1; i ++){
- if(q[i + 1] != q[i] + 1) tot ++;
- }
- return (tot + 2) / 3;
- }
-
- public static boolean dfs(int u, int depth){
- if(u + f() > depth) return false;//当前层数加估计层数大于最大层数
- if(f() == 0) return true;//错误后继为0
-
- for(int len = 1; len <= n; len ++){
- for(int l = 0; l + len - 1 < n; l ++){
- int r = l + len - 1;
- for(int k = r + 1; k < n; k ++){//移到k的后面
- w[u] = Arrays.copyOf(q, N);//拷贝
-
- int y = l;
- for(int x = r + 1; x <= k; x ++) q[y ++] = w[u][x];
- for(int x = l; x <= r; x ++) q[y ++] = w[u][x];
- if(dfs(u + 1, depth)) return true;
-
- q = Arrays.copyOf(w[u], N);//恢复现场
- }
- }
- }
- return false;
- }
-
- public static void main(String[] args){
- Scanner sc = new Scanner(System.in);
- int T = sc.nextInt();
- while(T -- > 0){
- n = sc.nextInt();
- for(int i = 0; i < n; i ++){
- q[i] = sc.nextInt();
- }
-
- int depth = 0;//这里是因为w数组从0开始
- //迭代加深
- while(depth < 5 && !dfs(0, depth)) depth ++;
-
- if(depth >= 5) System.out.println("5 or more");
- else System.out.println(depth);
- }
- }
- }
- import java.io.*;
-
- public class Main{
- static int N = 24;
- static int[] q = new int[N];//棋盘状态
- //棋盘每个位置的编号
- static int[][] op = {
- {0, 2, 6, 11, 15, 20, 22},
- {1, 3, 8, 12, 17, 21, 23},
- {10, 9, 8, 7, 6, 5, 4},
- {19, 18, 17, 16, 15, 14, 13},
- {23, 21, 17, 12, 8, 3, 1},
- {22, 20, 15, 11, 6, 2, 0},
- {13, 14, 15, 16, 17, 18, 19},
- {4, 5, 6, 7, 8, 9, 10},
- };
- //中间8个数的编号
- static int[] center = {6, 7, 8, 11, 12, 15, 16, 17};
- //每个操作的反向操作
- static int[] opposite = {5, 4, 7, 6, 1, 0, 3, 2};
- //操作方案
- static int[] path = new int[100];
-
- //估价函数,找到中间八个格子中最多的数
- public static int f(){
- int[] sum = new int[4];
- for(int i = 0; i < 8; i ++) sum[q[center[i]]] ++;
-
- int s = 0;
- for(int i = 1; i <= 3; i ++) s = Math.max(s, sum[i]);
- return 8 - s;//最少还要进行的操作的数量
- }
-
- //移动函数
- public static void operation(int x){//x表示第几个操作
- int t = q[op[x][0]];
- for(int i = 0; i < 6; i ++) q[op[x][i]] = q[op[x][i + 1]];
- q[op[x][6]] = t;
- }
-
- public static boolean dfs(int u, int depth, int last){
- if(u + f() > depth) return false;
- if(f() == 0) return true;
-
- for(int i = 0; i < 8; i ++){
- if(opposite[i] == last) continue;//如果是反向操作,立即停止
- operation(i);
- path[u] = i;
- if(dfs(u + 1, depth, i)) return true;
- operation(opposite[i]);
- }
- return false;
- }
-
- public static void main(String[] args)throws IOException{
- BufferedReader br = new BufferedReader(new InputStreamReader(System.in));
-
- String cur = "";
- while(!(cur = br.readLine()).equals("0")){
- //题目中说了每个测试用例占一行
- String[] arr = cur.split(" ");
- for(int i = 0; i < 24; i ++) q[i] = Integer.parseInt(arr[i]);
-
- int depth = 0;
- int last = -1;//上一次的操作
- while(!dfs(0, depth, last)) depth ++;
-
- if(depth == 0) System.out.println("No moves needed");
- else{
- for(int i = 0; i < depth; i ++) System.out.print((char)(path[i] + 'A'));
- System.out.println();
- }
- //无论哪种情况都要输出中间格子的数
- System.out.println(q[center[0]]);
- }
- }
- }