• STM32存储左右互搏 QSPI总线FATS文件读写FLASH W25QXX


    STM32存储左右互搏 QSPI总线FATS文件读写FLASH W25QXX

    FLASH是常用的一种非易失存储单元,W25QXX系列Flash有不同容量的型号,如W25Q64的容量为64Mbit,也就是8MByte。这里介绍STM32CUBEIDE开发平台HAL库Quad SPI总线实现FATS文件操作W25Q各型号FLASH的例程。非FATS直接Quad SPI操作W25QXX FLASH的方式见《STM32存储左右互搏 QSPI总线读写FLASH W25QXX

    W25QXX介绍

    W25QXX的SOIC封装如下所示,在采用QUAL SPI而不是SPI时,管脚定义为:
    在这里插入图片描述
    即由片选(/CS), 时钟(CLK), 双向4根输入输出线(IO0, IO1, IO2, IO3)组成6线QSPI信号接口。VCC和GND提供电源和接地连接。

    例程采用STM32H750VBT6芯片, FLASH可以选择为8/16/32/64/128/256/512/1024 Mbit的W25Q型号。

    STM32工程配置

    首先建立基本工程并设置时钟:
    在这里插入图片描述

    在这里插入图片描述
    注意QSPI时钟在单独的时钟树支上:
    在这里插入图片描述
    QSPI接口可以配置为两个Bank(并行协同存储扩展),也可以配置为单个Bank,并且可以由4线(数据线)模式降级为单线/双线(数据线)模式。这里对于单个Flash,选择一个bank配置:
    在这里插入图片描述
    在这里插入图片描述
    注意QSPI的片选信号是硬件自动控制,和SPI可以采用软件代码控制不同,所以不必单独指定一个GPIO作为片选:
    在这里插入图片描述
    不用DMA
    在这里插入图片描述
    配置FATS参数:
    在这里插入图片描述
    在这里插入图片描述
    在这里插入图片描述
    配置串口UART1作为命令输入和打印输出接口:
    在这里插入图片描述
    在这里插入图片描述
    在这里插入图片描述
    在这里插入图片描述
    不用DMA:
    在这里插入图片描述
    保存并生成初始工程代码:
    在这里插入图片描述

    STM32工程代码

    UART串口printf打印输出实现参考:STM32 UART串口printf函数应用及浮点打印代码空间节省 (HAL)

    建立W25Q访问的库头文件W25QXX_QSPI.h:*

    #ifndef INC_W25QXX_H_
    #define INC_W25QXX_H_
    
    #include "main.h"
    
    //W25QXX serial chip list:
    #define W25Q80_ID 	0XEF13
    #define W25Q16_ID 	0XEF14
    #define W25Q32_ID 	0XEF15
    #define W25Q64_ID 	0XEF16
    #define W25Q128_ID	0XEF17
    #define W25Q256_ID 0XEF18
    #define W25Q512_ID 0XEF19
    #define W25Q1024_ID 0XEF20
    
    extern uint16_t W25QXX_TYPE; //To indicate W25QXX type used in this procedure
    
    //command table for W25QXX access
    #define W25X_WriteEnable		0x06
    #define W25X_WriteDisable		0x04
    #define W25X_ReadStatusReg1		0x05
    #define W25X_ReadStatusReg2		0x35
    #define W25X_ReadStatusReg3		0x15
    #define W25X_WriteStatusReg1    0x01
    #define W25X_WriteStatusReg2    0x31
    #define W25X_WriteStatusReg3    0x11
    #define W25X_ReadData			0x03
    #define W25X_FastReadData		0x0B
    #define W25X_FastReadDual		0x3B
    #define W25X_PageProgram		0x02
    #define W25X_BlockErase			0xD8
    #define W25X_SectorErase		0x20
    #define W25X_ChipErase			0xC7
    #define W25X_PowerDown			0xB9
    #define W25X_ReleasePowerDown	0xAB
    #define W25X_DeviceID			0xAB
    #define W25X_ManufactDeviceID	0x90
    #define W25X_JedecDeviceID		0x9F
    #define W25X_Enable4ByteAddr    0xB7
    #define W25X_Exit4ByteAddr      0xE9
    
    #define W25X_QUAD_QuadInputPageProgram 0x32
    #define W25X_QUAD_FastReadQuadOutput 0x6B
    #define W25X_QUAD_ManufactDeviceID 0x94
    #define W25X_QUAD_FastRead 0xEB
    #define W25X_QUAD_SetBurstwithWrap 0x77
    
    
    uint8_t W25QXX_Init(void);
    uint16_t  W25QXX_ReadID(void);  	    		  //Read W25QXX ID
    uint8_t W25QXX_ReadSR(uint8_t reg_num);           //Read from status register
    void W25QXX_4ByteAddr_Enable(void);               //Enable 4-byte address mode
    void W25QXX_Write_SR(uint8_t reg_num,uint8_t d);  //Write to status register
    void W25QXX_Write_Enable(void);  		          //Write enable
    void W25QXX_Write_Disable(void);		          //Write disable
    void W25QXX_Write_NoCheck(uint8_t* pBuffer,uint32_t WriteAddr,uint16_t NumByteToWrite); //Write operation w/o check
    void W25QXX_Read(uint8_t* pBuffer,uint32_t ReadAddr,uint16_t NumByteToRead);            //Read operation
    void W25QXX_Write(uint8_t* pBuffer,uint32_t WriteAddr,uint16_t NumByteToWrite);         //Write operation
    void W25QXX_Erase_Chip(void);    	  	                                                //Erase whole chip
    void W25QXX_Erase_Sector(uint32_t Sector_Num);	                                        //Erase sector in specific sector number
    void W25QXX_Wait_Busy(void);           	       //Wait idle status before next operation
    void W25QXX_PowerDown(void);        	       //Enter power-down mode
    void W25QXX_WAKEUP(void);				       //Wake-up
    
    
    #endif /* INC_W25QXX_H_ */
    
    
    • 1
    • 2
    • 3
    • 4
    • 5
    • 6
    • 7
    • 8
    • 9
    • 10
    • 11
    • 12
    • 13
    • 14
    • 15
    • 16
    • 17
    • 18
    • 19
    • 20
    • 21
    • 22
    • 23
    • 24
    • 25
    • 26
    • 27
    • 28
    • 29
    • 30
    • 31
    • 32
    • 33
    • 34
    • 35
    • 36
    • 37
    • 38
    • 39
    • 40
    • 41
    • 42
    • 43
    • 44
    • 45
    • 46
    • 47
    • 48
    • 49
    • 50
    • 51
    • 52
    • 53
    • 54
    • 55
    • 56
    • 57
    • 58
    • 59
    • 60
    • 61
    • 62
    • 63
    • 64
    • 65
    • 66
    • 67

    建立W25Q访问的库源文件W25QXX_QSPI.c:

    #include "W25QXX_QSPI.h"
    
    extern QSPI_HandleTypeDef hqspi;
    extern void PY_Delay_us_t(uint32_t Delay);
    extern HAL_StatusTypeDef QSPI_Send_CMD(uint8_t cmd,uint32_t addr,uint8_t mode,uint8_t dmcycle);
    extern HAL_StatusTypeDef QSPI_Receive(uint8_t* buf,uint32_t datalen);
    extern HAL_StatusTypeDef QSPI_Transmit(uint8_t* buf,uint32_t datalen);
    
    #define Use_Quad_Line 1
    
    uint16_t W25QXX_TYPE=W25Q64_ID;
    
    //W25QXX initialization
    uint8_t W25QXX_Init(void)
    {
        uint8_t temp;
    
    	W25QXX_TYPE=W25QXX_ReadID();
    
    	if((W25QXX_TYPE==W25Q256_ID)||(W25QXX_TYPE==W25Q512_ID)||(W25QXX_TYPE==W25Q1024_ID))
        {
            temp=W25QXX_ReadSR(3);              //read status register 3
            if((temp&0X01)==0)			        //judge address mode and configure to 4-byte address mode
    		{
    			QSPI_Send_CMD(W25X_Enable4ByteAddr, 0x00, (0<<6)|(0<<4)|(0<<2)|(1<<0), 0);
    		}
        }
    
        if((W25QXX_TYPE==0x0000)||(W25QXX_TYPE==0xFFFF)) return 0;
        else return 1;
    }
    
    //Read status registers of W25QXX
    //reg_num: register number from 1 to 3
    //return: value of selected register
    
    //SR1 (default 0x00):
    //BIT7  6   5   4   3   2   1   0
    //SPR   RV  TB BP2 BP1 BP0 WEL BUSY
    //SPR: default 0, status register protection bit used with WP
    //TB,BP2,BP1,BP0: FLASH region write protection configuration
    //WEL: write enable lock
    //BUSY: busy flag (1: busy; 0: idle)
    
    //SR2:
    //BIT7  6   5   4   3   2   1   0
    //SUS   CMP LB3 LB2 LB1 (R) QE  SRP1
    
    //SR3:
    //BIT7      6    5    4   3   2   1   0
    //HOLD/RST  DRV1 DRV0 (R) (R) WPS ADP ADS
    uint8_t W25QXX_ReadSR(uint8_t reg_num)
    {
    	uint8_t byte=0,command=0;
        switch(reg_num)
        {
            case 1:
                command=W25X_ReadStatusReg1;    //To read status register 1
                break;
            case 2:
                command=W25X_ReadStatusReg2;    //To read status register 2
                break;
            case 3:
                command=W25X_ReadStatusReg3;    //To read status register 3
                break;
            default:
                command=W25X_ReadStatusReg1;
                break;
        }
    
    	QSPI_Send_CMD(command, 0x00, (1<<6)|(0<<4)|(0<<2)|(1<<0), 0);  //send command
    	QSPI_Receive(&byte,1);                                         //read data
    	return byte;
    }
    
    //Write status registers of W25QXX
    //reg_num: register number from 1 to 3
    //d: data for updating status register
    void W25QXX_Write_SR(uint8_t reg_num,uint8_t d)
    {
        uint8_t command=0;
        switch(reg_num)
        {
            case 1:
                command=W25X_WriteStatusReg1;    //To write status register 1
                break;
            case 2:
                command=W25X_WriteStatusReg2;    //To write status register 2
                break;
            case 3:
                command=W25X_WriteStatusReg3;    //To write status register 3
                break;
            default:
                command=W25X_WriteStatusReg1;
                break;
        }
    
    	QSPI_Send_CMD(command, 0x00, (1<<6)|(0<<4)|(0<<2)|(1<<0), 0); //send command
    	QSPI_Transmit(&d, 1);                                         //write data
    }
    //W25QXX write enable
    void W25QXX_Write_Enable(void)
    {
    	QSPI_Send_CMD(W25X_WriteEnable, 0x00, (0<<6)|(0<<4)|(0<<2)|(1<<0), 0); //send command
    }
    //W25QXX write disable
    void W25QXX_Write_Disable(void)
    {
    	QSPI_Send_CMD(W25X_WriteDisable, 0x00, (0<<6)|(0<<4)|(0<<2)|(1<<0), 0); //send command
    }
    
    //Read chip ID
    //return:
    //0XEF13 for W25Q80
    //0XEF14 for W25Q16
    //0XEF15 for W25Q32
    //0XEF16 for W25Q64
    //0XEF17 for W25Q128
    //0XEF18 for W25Q256
    uint16_t W25QXX_ReadID(void)
    {
    	uint16_t Temp = 0;
    	uint8_t st;
    	uint8_t TD[8];
    
    	if(Use_Quad_Line)
    	{
    		uint8_t extra_dummy = 4; //Adjust dummy here for I/O direction adjustment delay
    		QSPI_Send_CMD(W25X_QUAD_ManufactDeviceID, 0x000000f0, (3<<6)|(3<<4)|(3<<2)|(1<<0), extra_dummy);   ///To read Manufacturer/Device ID in Quad mode
    		st = QSPI_Receive(TD, 2);
    		if(st==0)
    		{
    			  Temp = (TD[0]<<8)|TD[1];
    		}
    		else
    		{
    			  Temp = 0;
    		}
    
    		  return Temp;
    	}
    	else
    	{
    		  QSPI_Send_CMD(W25X_ManufactDeviceID, 0x00, (1<<6)|(0<<4)|(0<<2)|(1<<0), 0);  //To read Manufacturer/Device ID in single line mode
    		  st = QSPI_Receive(TD, 5);
    		  if(st==0)
    		  {
    			  Temp = (TD[3]<<8)|TD[4];
    		  }
    		  else
    		  {
    			  Temp = 0;
    		  }
    
    		  return Temp;
    
    	}
    }
    //Read W25QXX from specific address for specific byte length
    //pBuffer: data buffer
    //ReadAddr: specific address
    //NumByteToRead: specific byte length (max 65535)
    void W25QXX_Read(uint8_t* pBuffer,uint32_t ReadAddr,uint16_t NumByteToRead)
    {
    	if(Use_Quad_Line)
    	{
    		  uint8_t extra_dummy = 8;    //Adjust dummy here for I/O direction adjustment delay
    		  if((W25QXX_TYPE==W25Q256_ID)||(W25QXX_TYPE==W25Q512_ID)||(W25QXX_TYPE==W25Q1024_ID))
    		  {
    			  QSPI_Send_CMD(W25X_QUAD_FastReadQuadOutput, ReadAddr, (3<<6)|(3<<4)|(1<<2)|(1<<0), extra_dummy);
    		  }
    		  else
    		  {
    			  QSPI_Send_CMD(W25X_QUAD_FastReadQuadOutput, ReadAddr, (3<<6)|(2<<4)|(1<<2)|(1<<0), extra_dummy);
    		  }
    		  QSPI_Receive(pBuffer, NumByteToRead); //read data
    	}
    	else
    	{
    		  uint8_t extra_dummy = 8;    //Adjust dummy here for I/O direction adjustment delay
    		  if((W25QXX_TYPE==W25Q256_ID)||(W25QXX_TYPE==W25Q512_ID)||(W25QXX_TYPE==W25Q1024_ID))
    		  {
    			  QSPI_Send_CMD(W25X_ReadData, ReadAddr, (1<<6)|(3<<4)|(1<<2)|(1<<0), extra_dummy);
    		  }
    		  else
    		  {
    			  QSPI_Send_CMD(W25X_ReadData, ReadAddr, (1<<6)|(2<<4)|(1<<2)|(1<<0), extra_dummy);
    		  }
    		  QSPI_Receive(pBuffer, NumByteToRead); //read data
    	}
    
    }
    
    //Write W25QXX not more than 1 page (256 bytes)
    //pBuffer: data buffer
    //WriteAddr: specific address
    //NumByteToWrite: specific byte length (max 256)
    void W25QXX_Write_Page(uint8_t* pBuffer,uint32_t WriteAddr,uint16_t NumByteToWrite)
    {
        W25QXX_Write_Enable();                                        //write enable
    
        //send write command
    	if(Use_Quad_Line)
    	{
    	    if((W25QXX_TYPE==W25Q256_ID)||(W25QXX_TYPE==W25Q512_ID)||(W25QXX_TYPE==W25Q1024_ID))
    	    {
    	        QSPI_Send_CMD(W25X_QUAD_QuadInputPageProgram, WriteAddr, (3<<6)|(3<<4)|(1<<2)|(1<<0), 0);
    	    }
    	    else
    	    {
    	    	QSPI_Send_CMD(W25X_QUAD_QuadInputPageProgram, WriteAddr, (3<<6)|(2<<4)|(1<<2)|(1<<0), 0);
    	    }
    	}
    	else
    	{
    	    if((W25QXX_TYPE==W25Q256_ID)||(W25QXX_TYPE==W25Q512_ID)||(W25QXX_TYPE==W25Q1024_ID))
    	    {
    	        QSPI_Send_CMD(W25X_PageProgram, WriteAddr, (1<<6)|(3<<4)|(1<<2)|(1<<0), 0);
    	    }
    	    else
    	    {
    	    	QSPI_Send_CMD(W25X_PageProgram, WriteAddr, (1<<6)|(2<<4)|(1<<2)|(1<<0), 0);
    	    }
    
    	}
    
        QSPI_Transmit(pBuffer, NumByteToWrite); //write data
    	W25QXX_Wait_Busy();
    }
    
    //Write W25QXX w/o erase check and w/o byte number restriction
    //pBuffer: data buffer
    //WriteAddr: specific address
    //NumByteToWrite: specific byte length (max 65535)
    void W25QXX_Write_NoCheck(uint8_t* pBuffer,uint32_t WriteAddr,uint16_t NumByteToWrite)
    {
    	uint16_t remained_byte_num_in_page;
    	remained_byte_num_in_page=256-WriteAddr%256;                                                       //remained byte number in page
    	if( NumByteToWrite <= remained_byte_num_in_page ) remained_byte_num_in_page = NumByteToWrite;      //data can be written in single page
    	while(1)
    	{
    		W25QXX_Write_Page(pBuffer,WriteAddr,remained_byte_num_in_page);
    		if(NumByteToWrite==remained_byte_num_in_page)break;                                            //end write operation
    	 	else                                                                                           //NumByteToWrite>remained_byte_num_in_page
    		{
    			pBuffer+=remained_byte_num_in_page;
    			WriteAddr+=remained_byte_num_in_page;
    
    			NumByteToWrite-=remained_byte_num_in_page;
    			if(NumByteToWrite>256) remained_byte_num_in_page=256;                                       //for whole page write
    			else remained_byte_num_in_page=NumByteToWrite; 	                                           //for non-whole page write
    		}
    	};
    }
    
    //Write W25QXX w/ erase after check and w/o byte number restriction
    //pBuffer: data buffer
    //WriteAddr: specific address
    //NumByteToWrite: specific byte length (max 65535)
    uint8_t W25QXX_BUFFER[4096];
    void W25QXX_Write(uint8_t* pBuffer,uint32_t WriteAddr,uint16_t NumByteToWrite)
    {
    	uint32_t secpos;
    	uint16_t secoff;
    	uint16_t secremain;
     	uint16_t i;
    	uint8_t * W25QXX_BUF;
       	W25QXX_BUF=W25QXX_BUFFER;
     	secpos=WriteAddr/4096;                                        //sector number (16 pages for 1 sector) for destination address
    	secoff=WriteAddr%4096;                                        //offset address in sector for destination address
    	secremain=4096-secoff;                                        //remained space for sector
     	if(NumByteToWrite<=secremain)secremain=NumByteToWrite;        //data can be written in single sector
    	while(1)
    	{
    		W25QXX_Read(W25QXX_BUF,secpos*4096,4096);                 //read sector data for ease necessity judgment
    		for(i=0;i<secremain;i++)                                  //check sector data status
    		{
    			if(W25QXX_BUF[secoff+i]!=0XFF) break;                 //ease necessary
    		}
    
    		if(i<secremain)                                           //for ease
    		{
    			W25QXX_Erase_Sector(secpos);                          //ease sector
    			for(i=0;i<secremain;i++)	                          //data copy
    			{
    				W25QXX_BUF[i+secoff]=pBuffer[i];
    			}
    			W25QXX_Write_NoCheck(W25QXX_BUF,secpos*4096,4096);     //write sector
    
    		}
    		else W25QXX_Write_NoCheck(pBuffer,WriteAddr,secremain);   //write data for sector unnecessary to erase
    
    		if(NumByteToWrite==secremain)break;                        //for operation end
    		else                                                       //for operation continuing
    		{
    			secpos++;                                              //sector number + 1
    			secoff=0;                                              //offset address from 0
    
    		   	pBuffer+=secremain;                                    //pointer adjustment
    			WriteAddr+=secremain;                                  //write address adjustment
    		   	NumByteToWrite-=secremain;				               //write number adjustment
    			if(NumByteToWrite>4096) secremain=4096;	               //not last sector
    			else secremain=NumByteToWrite;			               //last sector
    		}
    	};
    }
    
    //Erase whole chip, long waiting...
    void W25QXX_Erase_Chip(void)
    {
        W25QXX_Write_Enable();                  //write enable
        W25QXX_Wait_Busy();
        QSPI_Send_CMD(W25X_ChipErase, 0x00, (0<<6)|(0<<4)|(0<<2)|(1<<0), 0); //send erase command
    	W25QXX_Wait_Busy();   				    //wait for erase complete
    }
    
    //Erase one sector
    //Sector_Num: sector number
    void W25QXX_Erase_Sector(uint32_t Sector_Num)
    {
     	Sector_Num *= 4096;
        W25QXX_Write_Enable();                                     //write enable
        W25QXX_Wait_Busy();
    
        if((W25QXX_TYPE==W25Q256_ID)||(W25QXX_TYPE==W25Q512_ID)||(W25QXX_TYPE==W25Q1024_ID)) //send highest 8-bit address
        {
        	QSPI_Send_CMD(W25X_SectorErase, Sector_Num, (0<<6)|(3<<4)|(1<<2)|(1<<0), 0); //send erase command
        }
        else
        {
        	QSPI_Send_CMD(W25X_SectorErase, Sector_Num, (0<<6)|(2<<4)|(1<<2)|(1<<0), 0); //send erase command
        }
        W25QXX_Wait_Busy();   				                       //wait for erase complete
    }
    
    //Wait idle status before next operation
    void W25QXX_Wait_Busy(void)
    {
    	while((W25QXX_ReadSR(1)&0x01)==0x01);    //wait for busy flag cleared
    }
    
    //Enter power-down mode
    #define tDP_us 3
    void W25QXX_PowerDown(void)
    {
        QSPI_Send_CMD(W25X_PowerDown, 0, (0<<6)|(0<<4)|(0<<2)|(1<<0), 0);        //send power-down command
    	PY_Delay_us_t(tDP_us);                   //tDP
    }
    //Wake-up
    #define tRES1_us 3
    void W25QXX_WAKEUP(void)
    {
        QSPI_Send_CMD(W25X_ReleasePowerDown, 0, (0<<6)|(0<<4)|(0<<2)|(1<<0), 0); //send release power-down command
    	PY_Delay_us_t(tRES1_us);                 //tRES1
    }
    
    
    • 1
    • 2
    • 3
    • 4
    • 5
    • 6
    • 7
    • 8
    • 9
    • 10
    • 11
    • 12
    • 13
    • 14
    • 15
    • 16
    • 17
    • 18
    • 19
    • 20
    • 21
    • 22
    • 23
    • 24
    • 25
    • 26
    • 27
    • 28
    • 29
    • 30
    • 31
    • 32
    • 33
    • 34
    • 35
    • 36
    • 37
    • 38
    • 39
    • 40
    • 41
    • 42
    • 43
    • 44
    • 45
    • 46
    • 47
    • 48
    • 49
    • 50
    • 51
    • 52
    • 53
    • 54
    • 55
    • 56
    • 57
    • 58
    • 59
    • 60
    • 61
    • 62
    • 63
    • 64
    • 65
    • 66
    • 67
    • 68
    • 69
    • 70
    • 71
    • 72
    • 73
    • 74
    • 75
    • 76
    • 77
    • 78
    • 79
    • 80
    • 81
    • 82
    • 83
    • 84
    • 85
    • 86
    • 87
    • 88
    • 89
    • 90
    • 91
    • 92
    • 93
    • 94
    • 95
    • 96
    • 97
    • 98
    • 99
    • 100
    • 101
    • 102
    • 103
    • 104
    • 105
    • 106
    • 107
    • 108
    • 109
    • 110
    • 111
    • 112
    • 113
    • 114
    • 115
    • 116
    • 117
    • 118
    • 119
    • 120
    • 121
    • 122
    • 123
    • 124
    • 125
    • 126
    • 127
    • 128
    • 129
    • 130
    • 131
    • 132
    • 133
    • 134
    • 135
    • 136
    • 137
    • 138
    • 139
    • 140
    • 141
    • 142
    • 143
    • 144
    • 145
    • 146
    • 147
    • 148
    • 149
    • 150
    • 151
    • 152
    • 153
    • 154
    • 155
    • 156
    • 157
    • 158
    • 159
    • 160
    • 161
    • 162
    • 163
    • 164
    • 165
    • 166
    • 167
    • 168
    • 169
    • 170
    • 171
    • 172
    • 173
    • 174
    • 175
    • 176
    • 177
    • 178
    • 179
    • 180
    • 181
    • 182
    • 183
    • 184
    • 185
    • 186
    • 187
    • 188
    • 189
    • 190
    • 191
    • 192
    • 193
    • 194
    • 195
    • 196
    • 197
    • 198
    • 199
    • 200
    • 201
    • 202
    • 203
    • 204
    • 205
    • 206
    • 207
    • 208
    • 209
    • 210
    • 211
    • 212
    • 213
    • 214
    • 215
    • 216
    • 217
    • 218
    • 219
    • 220
    • 221
    • 222
    • 223
    • 224
    • 225
    • 226
    • 227
    • 228
    • 229
    • 230
    • 231
    • 232
    • 233
    • 234
    • 235
    • 236
    • 237
    • 238
    • 239
    • 240
    • 241
    • 242
    • 243
    • 244
    • 245
    • 246
    • 247
    • 248
    • 249
    • 250
    • 251
    • 252
    • 253
    • 254
    • 255
    • 256
    • 257
    • 258
    • 259
    • 260
    • 261
    • 262
    • 263
    • 264
    • 265
    • 266
    • 267
    • 268
    • 269
    • 270
    • 271
    • 272
    • 273
    • 274
    • 275
    • 276
    • 277
    • 278
    • 279
    • 280
    • 281
    • 282
    • 283
    • 284
    • 285
    • 286
    • 287
    • 288
    • 289
    • 290
    • 291
    • 292
    • 293
    • 294
    • 295
    • 296
    • 297
    • 298
    • 299
    • 300
    • 301
    • 302
    • 303
    • 304
    • 305
    • 306
    • 307
    • 308
    • 309
    • 310
    • 311
    • 312
    • 313
    • 314
    • 315
    • 316
    • 317
    • 318
    • 319
    • 320
    • 321
    • 322
    • 323
    • 324
    • 325
    • 326
    • 327
    • 328
    • 329
    • 330
    • 331
    • 332
    • 333
    • 334
    • 335
    • 336
    • 337
    • 338
    • 339
    • 340
    • 341
    • 342
    • 343
    • 344
    • 345
    • 346
    • 347
    • 348
    • 349
    • 350
    • 351
    • 352
    • 353
    • 354
    • 355
    • 356

    对ffconf.h添加包含信息:
    在这里插入图片描述

    #include "main.h"
    #include "stm32h7xx_hal.h"
    
    • 1
    • 2

    修改user_diskio.c,对文件操作函数与底层FLASH读写提供连接:

    /* USER CODE BEGIN Header */
    /**
     ******************************************************************************
      * @file    user_diskio.c
      * @brief   This file includes a diskio driver skeleton to be completed by the user.
      ******************************************************************************
      * @attention
      *
      * Copyright (c) 2023 STMicroelectronics.
      * All rights reserved.
      *
      * This software is licensed under terms that can be found in the LICENSE file
      * in the root directory of this software component.
      * If no LICENSE file comes with this software, it is provided AS-IS.
      *
      ******************************************************************************
      */
     /* USER CODE END Header */
    
    #ifdef USE_OBSOLETE_USER_CODE_SECTION_0
    /*
     * Warning: the user section 0 is no more in use (starting from CubeMx version 4.16.0)
     * To be suppressed in the future.
     * Kept to ensure backward compatibility with previous CubeMx versions when
     * migrating projects.
     * User code previously added there should be copied in the new user sections before
     * the section contents can be deleted.
     */
    /* USER CODE BEGIN 0 */
    /* USER CODE END 0 */
    #endif
    
    /* USER CODE BEGIN DECL */
    /**************************SELF DEFINITION PART************/
    #include "diskio.h"		/* Declarations of disk functions */
    #include "W25QXX_QSPI.h"
    /**********************************************************/
    /* Includes ------------------------------------------------------------------*/
    #include 
    #include "ff_gen_drv.h"
    
    /* Private typedef -----------------------------------------------------------*/
    /* Private define ------------------------------------------------------------*/
    
    /* Private variables ---------------------------------------------------------*/
    /* Disk status */
    static volatile DSTATUS Stat = STA_NOINIT;
    
    /* USER CODE END DECL */
    
    /* Private function prototypes -----------------------------------------------*/
    DSTATUS USER_initialize (BYTE pdrv);
    DSTATUS USER_status (BYTE pdrv);
    DRESULT USER_read (BYTE pdrv, BYTE *buff, DWORD sector, UINT count);
    #if _USE_WRITE == 1
      DRESULT USER_write (BYTE pdrv, const BYTE *buff, DWORD sector, UINT count);
    #endif /* _USE_WRITE == 1 */
    #if _USE_IOCTL == 1
      DRESULT USER_ioctl (BYTE pdrv, BYTE cmd, void *buff);
    #endif /* _USE_IOCTL == 1 */
    
    Diskio_drvTypeDef  USER_Driver =
    {
      USER_initialize,
      USER_status,
      USER_read,
    #if  _USE_WRITE
      USER_write,
    #endif  /* _USE_WRITE == 1 */
    #if  _USE_IOCTL == 1
      USER_ioctl,
    #endif /* _USE_IOCTL == 1 */
    };
    
    /* Private functions ---------------------------------------------------------*/
    
    /**
      * @brief  Initializes a Drive
      * @param  pdrv: Physical drive number (0..)
      * @retval DSTATUS: Operation status
      */
    DSTATUS USER_initialize (
    	BYTE pdrv           /* Physical drive nmuber to identify the drive */
    )
    {
      /* USER CODE BEGIN INIT */
    	/**************************SELF DEFINITION PART************/
    		  uint8_t res;
    		  res = W25QXX_Init();
    
    		  if(res) return RES_OK;
    		  else return  STA_NOINIT;
    	/**********************************************************/
    	/*
        Stat = STA_NOINIT;
        return Stat;
        */
      /* USER CODE END INIT */
    }
    
    /**
      * @brief  Gets Disk Status
      * @param  pdrv: Physical drive number (0..)
      * @retval DSTATUS: Operation status
      */
    DSTATUS USER_status (
    	BYTE pdrv       /* Physical drive number to identify the drive */
    )
    {
      /* USER CODE BEGIN STATUS */
    	/**************************SELF DEFINITION PART************/
    		switch (pdrv)
    			{
    				case 0 :
    					return RES_OK;
    				case 1 :
    					return RES_OK;
    				case 2 :
    					return RES_OK;
    				default:
    					return STA_NOINIT;
    			}
    	/**********************************************************/
    	/*
        Stat = STA_NOINIT;
        return Stat;
        */
      /* USER CODE END STATUS */
    }
    
    /**
      * @brief  Reads Sector(s)
      * @param  pdrv: Physical drive number (0..)
      * @param  *buff: Data buffer to store read data
      * @param  sector: Sector address (LBA)
      * @param  count: Number of sectors to read (1..128)
      * @retval DRESULT: Operation result
      */
    DRESULT USER_read (
    	BYTE pdrv,      /* Physical drive nmuber to identify the drive */
    	BYTE *buff,     /* Data buffer to store read data */
    	DWORD sector,   /* Sector address in LBA */
    	UINT count      /* Number of sectors to read */
    )
    {
      /* USER CODE BEGIN READ */
    	/**************************SELF DEFINITION PART************/
    		    uint16_t len;
    			if( !count )
    			{
    				return RES_PARERR;  /* count不能等于0,否则返回参数错误*/
    			}
    			switch (pdrv)
    			{
    				case 0:
    					sector <<= 9; //Convert sector number to byte address
    				    len = count*512;
    				    W25QXX_Read(buff, sector, len);
    				    return RES_OK;
    				default:
    					return RES_ERROR;
    			}
    	/**********************************************************/
    	/*
        return RES_OK;
        */
      /* USER CODE END READ */
    }
    
    /**
      * @brief  Writes Sector(s)
      * @param  pdrv: Physical drive number (0..)
      * @param  *buff: Data to be written
      * @param  sector: Sector address (LBA)
      * @param  count: Number of sectors to write (1..128)
      * @retval DRESULT: Operation result
      */
    #if _USE_WRITE == 1
    DRESULT USER_write (
    	BYTE pdrv,          /* Physical drive nmuber to identify the drive */
    	const BYTE *buff,   /* Data to be written */
    	DWORD sector,       /* Sector address in LBA */
    	UINT count          /* Number of sectors to write */
    )
    {
      /* USER CODE BEGIN WRITE */
      /* USER CODE HERE */
    	/**************************SELF DEFINITION PART************/
    		    uint16_t len;
    			if( !count )
    			{
    				return RES_PARERR;  /* count不能等于0,否则返回参数错误*/
    			}
    			switch (pdrv)
    			{
    				case 0:
    					sector <<= 9; //Convert sector number to byte address
    				    len = count*512;
    				    W25QXX_Write((uint8_t *)buff, sector, len);
    				    return RES_OK;
    				default:
    					return RES_ERROR;
    			}
    	/*********************************************************/
    	/*
        return RES_OK;
        */
      /* USER CODE END WRITE */
    }
    #endif /* _USE_WRITE == 1 */
    
    /**
      * @brief  I/O control operation
      * @param  pdrv: Physical drive number (0..)
      * @param  cmd: Control code
      * @param  *buff: Buffer to send/receive control data
      * @retval DRESULT: Operation result
      */
    #if _USE_IOCTL == 1
    DRESULT USER_ioctl (
    	BYTE pdrv,      /* Physical drive nmuber (0..) */
    	BYTE cmd,       /* Control code */
    	void *buff      /* Buffer to send/receive control data */
    )
    {
      /* USER CODE BEGIN IOCTL */
    	/**************************SELF DEFINITION PART************/
                 #define user_sector_byte_size 512
    		     DRESULT res;
    			 switch(cmd)
    			    {
    				    case CTRL_SYNC:
    								W25QXX_Wait_Busy();
    								res=RES_OK;
    				        break;
    				    case GET_SECTOR_SIZE:
    				        *(WORD*)buff = user_sector_byte_size;
    				        res = RES_OK;
    				        break;
    				    case GET_BLOCK_SIZE:
    				        *(WORD*)buff = 4096/user_sector_byte_size;
    				        res = RES_OK;
    				        break;
    				    case GET_SECTOR_COUNT:
    				    	W25QXX_TYPE=W25QXX_ReadID();
    				    	if(W25QXX_TYPE==W25Q80_ID) *(DWORD*)buff = (8*1024*1024/512);
    				    	else if(W25QXX_TYPE==W25Q16_ID) *(DWORD*)buff = (16*1024*1024/512);
    				    	else if(W25QXX_TYPE==W25Q32_ID) *(DWORD*)buff = (32*1024*1024/512);
    				    	else if(W25QXX_TYPE==W25Q64_ID) *(DWORD*)buff = (64*1024*1024/512);
    				    	else if(W25QXX_TYPE==W25Q128_ID) *(DWORD*)buff = (128*1024*1024/512);
    				    	else if(W25QXX_TYPE==W25Q256_ID) *(DWORD*)buff = (256*1024*1024/512);
    				    	else if(W25QXX_TYPE==W25Q512_ID) *(DWORD*)buff = (512*1024*1024/512);
    				    	else if(W25QXX_TYPE==W25Q1024_ID) *(DWORD*)buff = (1024*1024*1024/512);
    				    	else *(DWORD*)buff = (8*1024*1024/512);
    				        res = RES_OK;
    				        break;
    				    default:
    				        res = RES_PARERR;
    				        break;
    			    }
    				return res;
    	/**********************************************************/
    	/*
        DRESULT res = RES_ERROR;
        return res;
        */
      /* USER CODE END IOCTL */
    }
    #endif /* _USE_IOCTL == 1 */
    
    
    
    • 1
    • 2
    • 3
    • 4
    • 5
    • 6
    • 7
    • 8
    • 9
    • 10
    • 11
    • 12
    • 13
    • 14
    • 15
    • 16
    • 17
    • 18
    • 19
    • 20
    • 21
    • 22
    • 23
    • 24
    • 25
    • 26
    • 27
    • 28
    • 29
    • 30
    • 31
    • 32
    • 33
    • 34
    • 35
    • 36
    • 37
    • 38
    • 39
    • 40
    • 41
    • 42
    • 43
    • 44
    • 45
    • 46
    • 47
    • 48
    • 49
    • 50
    • 51
    • 52
    • 53
    • 54
    • 55
    • 56
    • 57
    • 58
    • 59
    • 60
    • 61
    • 62
    • 63
    • 64
    • 65
    • 66
    • 67
    • 68
    • 69
    • 70
    • 71
    • 72
    • 73
    • 74
    • 75
    • 76
    • 77
    • 78
    • 79
    • 80
    • 81
    • 82
    • 83
    • 84
    • 85
    • 86
    • 87
    • 88
    • 89
    • 90
    • 91
    • 92
    • 93
    • 94
    • 95
    • 96
    • 97
    • 98
    • 99
    • 100
    • 101
    • 102
    • 103
    • 104
    • 105
    • 106
    • 107
    • 108
    • 109
    • 110
    • 111
    • 112
    • 113
    • 114
    • 115
    • 116
    • 117
    • 118
    • 119
    • 120
    • 121
    • 122
    • 123
    • 124
    • 125
    • 126
    • 127
    • 128
    • 129
    • 130
    • 131
    • 132
    • 133
    • 134
    • 135
    • 136
    • 137
    • 138
    • 139
    • 140
    • 141
    • 142
    • 143
    • 144
    • 145
    • 146
    • 147
    • 148
    • 149
    • 150
    • 151
    • 152
    • 153
    • 154
    • 155
    • 156
    • 157
    • 158
    • 159
    • 160
    • 161
    • 162
    • 163
    • 164
    • 165
    • 166
    • 167
    • 168
    • 169
    • 170
    • 171
    • 172
    • 173
    • 174
    • 175
    • 176
    • 177
    • 178
    • 179
    • 180
    • 181
    • 182
    • 183
    • 184
    • 185
    • 186
    • 187
    • 188
    • 189
    • 190
    • 191
    • 192
    • 193
    • 194
    • 195
    • 196
    • 197
    • 198
    • 199
    • 200
    • 201
    • 202
    • 203
    • 204
    • 205
    • 206
    • 207
    • 208
    • 209
    • 210
    • 211
    • 212
    • 213
    • 214
    • 215
    • 216
    • 217
    • 218
    • 219
    • 220
    • 221
    • 222
    • 223
    • 224
    • 225
    • 226
    • 227
    • 228
    • 229
    • 230
    • 231
    • 232
    • 233
    • 234
    • 235
    • 236
    • 237
    • 238
    • 239
    • 240
    • 241
    • 242
    • 243
    • 244
    • 245
    • 246
    • 247
    • 248
    • 249
    • 250
    • 251
    • 252
    • 253
    • 254
    • 255
    • 256
    • 257
    • 258
    • 259
    • 260
    • 261
    • 262
    • 263
    • 264
    • 265
    • 266
    • 267
    • 268
    • 269
    • 270
    • 271

    main.c文件操作代码里包含几个QSPI操作函数定义如下:

    #define page_byte_size 256
    uint8_t sdbuffer[page_byte_size];
    
    /*
    QSPI TX in block mode for command byte
    cmd: command to be sent to device
    addr: address to be sent to device
    mode: operation mode set as
    	mode[1:0] for command transmission mode ( 00: no command; 01: single-line transmission; 10: dual-line transmission; 11: four-line transmission )
    	mode[3:2] for address transmission mode ( 00: no address; 01: single-line transmission; 10: dual-line transmission; 11: four-line transmission )
    	mode[5:4] for address length ( 00:8-bit address; 01: 16-bit address; 10: 24-bit address; 11: 32-bit address )
    	mode[7:6] for data transmission mode ( 00: no command; 01: single-line transmission; 10: dual-line transmission; 11: four-line transmission )
    dmcycle: dummy clock cycle
    */
    HAL_StatusTypeDef QSPI_Send_CMD(uint8_t cmd,uint32_t addr,uint8_t mode,uint8_t dmcycle)
    {
    	QSPI_CommandTypeDef Cmdhandler;
    
    	Cmdhandler.Instruction=cmd;		//set cmd
    	Cmdhandler.Address=addr;		//set address
    	Cmdhandler.DummyCycles=dmcycle; //set dummy circle number
    
    	/*set cmd transmission mode*/
    	if(((mode>>0)&0x03) == 0)
    	Cmdhandler.InstructionMode=QSPI_INSTRUCTION_NONE;
    	else if(((mode>>0)&0x03) == 1)
    	Cmdhandler.InstructionMode=QSPI_INSTRUCTION_1_LINE;
    	else if(((mode>>0)&0x03) == 2)
    	Cmdhandler.InstructionMode=QSPI_INSTRUCTION_2_LINES;
    	else if(((mode>>0)&0x03) == 3)
    	Cmdhandler.InstructionMode=QSPI_INSTRUCTION_4_LINES;
    
    	/*set address transmission mode*/
    	if(((mode>>2)&0x03) == 0)
    	Cmdhandler.AddressMode=QSPI_ADDRESS_NONE;
    	else if(((mode>>2)&0x03) == 1)
    	Cmdhandler.AddressMode=QSPI_ADDRESS_1_LINE;
    	else if(((mode>>2)&0x03) == 2)
    	Cmdhandler.AddressMode=QSPI_ADDRESS_2_LINES;
    	else if(((mode>>2)&0x03) == 3)
    	Cmdhandler.AddressMode=QSPI_ADDRESS_4_LINES;
    
    	/*set address length*/
    	if(((mode>>4)&0x03) == 0)
    	Cmdhandler.AddressSize=QSPI_ADDRESS_8_BITS;
    	else if(((mode>>4)&0x03) == 1)
    	Cmdhandler.AddressSize=QSPI_ADDRESS_16_BITS;
    	else if(((mode>>4)&0x03) == 2)
    	Cmdhandler.AddressSize=QSPI_ADDRESS_24_BITS;
    	else if(((mode>>4)&0x03) == 3)
    	Cmdhandler.AddressSize=QSPI_ADDRESS_32_BITS;
    
    	/*set data transmission mode*/
    	if(((mode>>6)&0x03) == 0)
    	Cmdhandler.DataMode=QSPI_DATA_NONE;
    	else if(((mode>>6)&0x03) == 1)
    	Cmdhandler.DataMode=QSPI_DATA_1_LINE;
    	else if(((mode>>6)&0x03) == 2)
    	Cmdhandler.DataMode=QSPI_DATA_2_LINES;
    	else if(((mode>>6)&0x03) == 3)
    	Cmdhandler.DataMode=QSPI_DATA_4_LINES;
    
    	Cmdhandler.SIOOMode=QSPI_SIOO_INST_EVERY_CMD;				/*Send instruction on every transaction*/
    	Cmdhandler.AlternateByteMode=QSPI_ALTERNATE_BYTES_NONE;		/*No alternate bytes*/
    	Cmdhandler.DdrMode=QSPI_DDR_MODE_DISABLE;					/*Double data rate mode disabled*/
    	Cmdhandler.DdrHoldHalfCycle=QSPI_DDR_HHC_ANALOG_DELAY;      /*Delay the data output using analog delay in DDR mode*/
    
    	return HAL_QSPI_Command(&hqspi,&Cmdhandler,5000);
    }
    
    //QSPI RX in block mode for data
    //buf : buffer address for RX data
    //datalen : RX data length
    //return : 0, OK
    //         others, error code
    HAL_StatusTypeDef QSPI_Receive(uint8_t* buf,uint32_t datalen)
    {
        hqspi.Instance->DLR=datalen-1;
        return HAL_QSPI_Receive(&hqspi,buf,5000);
    }
    
    //QSPI TX in block mode for data
    //buf : buffer address for TX data
    //datalen : TX data length
    //return : 0, OK
    //         others, error code
    HAL_StatusTypeDef QSPI_Transmit(uint8_t* buf,uint32_t datalen)
    {
        hqspi.Instance->DLR=datalen-1;
        return HAL_QSPI_Transmit(&hqspi,buf,5000);
    }
    
    • 1
    • 2
    • 3
    • 4
    • 5
    • 6
    • 7
    • 8
    • 9
    • 10
    • 11
    • 12
    • 13
    • 14
    • 15
    • 16
    • 17
    • 18
    • 19
    • 20
    • 21
    • 22
    • 23
    • 24
    • 25
    • 26
    • 27
    • 28
    • 29
    • 30
    • 31
    • 32
    • 33
    • 34
    • 35
    • 36
    • 37
    • 38
    • 39
    • 40
    • 41
    • 42
    • 43
    • 44
    • 45
    • 46
    • 47
    • 48
    • 49
    • 50
    • 51
    • 52
    • 53
    • 54
    • 55
    • 56
    • 57
    • 58
    • 59
    • 60
    • 61
    • 62
    • 63
    • 64
    • 65
    • 66
    • 67
    • 68
    • 69
    • 70
    • 71
    • 72
    • 73
    • 74
    • 75
    • 76
    • 77
    • 78
    • 79
    • 80
    • 81
    • 82
    • 83
    • 84
    • 85
    • 86
    • 87
    • 88
    • 89
    • 90
    • 91

    然后在main.c里根据串口输入命令(16进制单字节)实现如下功能:
    0x01. 读取FLASH ID
    0x02. 装载FATS文件系统
    0x03: 创建/打开文件并从头位置写入数据
    0x04: 打开文件并从头位置读入数据
    0x05: 创建/打开文件并从特定位置写入数据
    0x06: 打开文件并从特定位置读入数据
    完整的代码实现如下:

    /* USER CODE BEGIN Header */
    /**
      ******************************************************************************
      * @file           : main.c
      * @brief          : Main program body
      ******************************************************************************
      * @attention
      *
      * Copyright (c) 2023 STMicroelectronics.
      * All rights reserved.
      *
      * This software is licensed under terms that can be found in the LICENSE file
      * in the root directory of this software component.
      * If no LICENSE file comes with this software, it is provided AS-IS.
      *
      ******************************************************************************
      */
    //Written by Pegasus Yu in 2023
    //NOte: to access W25Qxx, send single line command at first to trigger consequent operation mode for address and data which could be 1-line or 4-line
    /* USER CODE END Header */
    /* Includes ------------------------------------------------------------------*/
    #include "main.h"
    #include "fatfs.h"
    
    /* Private includes ----------------------------------------------------------*/
    /* USER CODE BEGIN Includes */
    #include 
    #include "usart.h"
    #include "W25QXX_QSPI.h"
    /* USER CODE END Includes */
    
    /* Private typedef -----------------------------------------------------------*/
    /* USER CODE BEGIN PTD */
    __IO float usDelayBase;
    void PY_usDelayTest(void)
    {
      __IO uint32_t firstms, secondms;
      __IO uint32_t counter = 0;
    
      firstms = HAL_GetTick()+1;
      secondms = firstms+1;
    
      while(uwTick!=firstms) ;
    
      while(uwTick!=secondms) counter++;
    
      usDelayBase = ((float)counter)/1000;
    }
    
    void PY_Delay_us_t(uint32_t Delay)
    {
      __IO uint32_t delayReg;
      __IO uint32_t usNum = (uint32_t)(Delay*usDelayBase);
    
      delayReg = 0;
      while(delayReg!=usNum) delayReg++;
    }
    
    void PY_usDelayOptimize(void)
    {
      __IO uint32_t firstms, secondms;
      __IO float coe = 1.0;
    
      firstms = HAL_GetTick();
      PY_Delay_us_t(1000000) ;
      secondms = HAL_GetTick();
    
      coe = ((float)1000)/(secondms-firstms);
      usDelayBase = coe*usDelayBase;
    }
    
    
    void PY_Delay_us(uint32_t Delay)
    {
      __IO uint32_t delayReg;
    
      __IO uint32_t msNum = Delay/1000;
      __IO uint32_t usNum = (uint32_t)((Delay%1000)*usDelayBase);
    
      if(msNum>0) HAL_Delay(msNum);
    
      delayReg = 0;
      while(delayReg!=usNum) delayReg++;
    }
    /* USER CODE END PTD */
    
    /* Private define ------------------------------------------------------------*/
    /* USER CODE BEGIN PD */
    /* USER CODE END PD */
    
    /* Private macro -------------------------------------------------------------*/
    /* USER CODE BEGIN PM */
    
    /* USER CODE END PM */
    
    /* Private variables ---------------------------------------------------------*/
    
    QSPI_HandleTypeDef hqspi;
    
    UART_HandleTypeDef huart1;
    
    /* USER CODE BEGIN PV */
    uint8_t uart1_rx[16];
    uint8_t cmd;
    
    uint8_t Flash_mount_status = 0; //FLASH fats mount status indication (0: unmount; 1: mount)
    uint8_t FATS_Buff[_MAX_SS]; //Buffer for f_mkfs() operation
    
    FRESULT retFLASH;
    FIL file;
    FATFS *fs;
    
    UINT bytesread;
    UINT byteswritten;
    uint8_t rBuffer[20];      //Buffer for read
    uint8_t WBuffer[20] ={1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20}; //Buffer for write
    
    #define user_sector_byte_size 512
    uint8_t flashbuffer[user_sector_byte_size];
    /* USER CODE END PV */
    
    /* Private function prototypes -----------------------------------------------*/
    void SystemClock_Config(void);
    static void MX_GPIO_Init(void);
    static void MX_USART1_UART_Init(void);
    static void MX_QUADSPI_Init(void);
    /* USER CODE BEGIN PFP */
    
    /* USER CODE END PFP */
    
    /* Private user code ---------------------------------------------------------*/
    /* USER CODE BEGIN 0 */
    
    /*
    QSPI TX in block mode for command byte
    cmd: command to be sent to device
    addr: address to be sent to device
    mode: operation mode set as
    	mode[1:0] for command transmission mode ( 00: no command; 01: single-line transmission; 10: dual-line transmission; 11: four-line transmission )
    	mode[3:2] for address transmission mode ( 00: no address; 01: single-line transmission; 10: dual-line transmission; 11: four-line transmission )
    	mode[5:4] for address length ( 00:8-bit address; 01: 16-bit address; 10: 24-bit address; 11: 32-bit address )
    	mode[7:6] for data transmission mode ( 00: no command; 01: single-line transmission; 10: dual-line transmission; 11: four-line transmission )
    dmcycle: dummy clock cycle
    */
    HAL_StatusTypeDef QSPI_Send_CMD(uint8_t cmd,uint32_t addr,uint8_t mode,uint8_t dmcycle)
    {
    	QSPI_CommandTypeDef Cmdhandler;
    
    	Cmdhandler.Instruction=cmd;		//set cmd
    	Cmdhandler.Address=addr;		//set address
    	Cmdhandler.DummyCycles=dmcycle; //set dummy circle number
    
    	/*set cmd transmission mode*/
    	if(((mode>>0)&0x03) == 0)
    	Cmdhandler.InstructionMode=QSPI_INSTRUCTION_NONE;
    	else if(((mode>>0)&0x03) == 1)
    	Cmdhandler.InstructionMode=QSPI_INSTRUCTION_1_LINE;
    	else if(((mode>>0)&0x03) == 2)
    	Cmdhandler.InstructionMode=QSPI_INSTRUCTION_2_LINES;
    	else if(((mode>>0)&0x03) == 3)
    	Cmdhandler.InstructionMode=QSPI_INSTRUCTION_4_LINES;
    
    	/*set address transmission mode*/
    	if(((mode>>2)&0x03) == 0)
    	Cmdhandler.AddressMode=QSPI_ADDRESS_NONE;
    	else if(((mode>>2)&0x03) == 1)
    	Cmdhandler.AddressMode=QSPI_ADDRESS_1_LINE;
    	else if(((mode>>2)&0x03) == 2)
    	Cmdhandler.AddressMode=QSPI_ADDRESS_2_LINES;
    	else if(((mode>>2)&0x03) == 3)
    	Cmdhandler.AddressMode=QSPI_ADDRESS_4_LINES;
    
    	/*set address length*/
    	if(((mode>>4)&0x03) == 0)
    	Cmdhandler.AddressSize=QSPI_ADDRESS_8_BITS;
    	else if(((mode>>4)&0x03) == 1)
    	Cmdhandler.AddressSize=QSPI_ADDRESS_16_BITS;
    	else if(((mode>>4)&0x03) == 2)
    	Cmdhandler.AddressSize=QSPI_ADDRESS_24_BITS;
    	else if(((mode>>4)&0x03) == 3)
    	Cmdhandler.AddressSize=QSPI_ADDRESS_32_BITS;
    
    	/*set data transmission mode*/
    	if(((mode>>6)&0x03) == 0)
    	Cmdhandler.DataMode=QSPI_DATA_NONE;
    	else if(((mode>>6)&0x03) == 1)
    	Cmdhandler.DataMode=QSPI_DATA_1_LINE;
    	else if(((mode>>6)&0x03) == 2)
    	Cmdhandler.DataMode=QSPI_DATA_2_LINES;
    	else if(((mode>>6)&0x03) == 3)
    	Cmdhandler.DataMode=QSPI_DATA_4_LINES;
    
    	Cmdhandler.SIOOMode=QSPI_SIOO_INST_EVERY_CMD;				/*Send instruction on every transaction*/
    	Cmdhandler.AlternateByteMode=QSPI_ALTERNATE_BYTES_NONE;		/*No alternate bytes*/
    	Cmdhandler.DdrMode=QSPI_DDR_MODE_DISABLE;					/*Double data rate mode disabled*/
    	Cmdhandler.DdrHoldHalfCycle=QSPI_DDR_HHC_ANALOG_DELAY;      /*Delay the data output using analog delay in DDR mode*/
    
    	return HAL_QSPI_Command(&hqspi,&Cmdhandler,5000);
    }
    
    //QSPI RX in block mode for data
    //buf : buffer address for RX data
    //datalen : RX data length
    //return : 0, OK
    //         others, error code
    HAL_StatusTypeDef QSPI_Receive(uint8_t* buf,uint32_t datalen)
    {
        hqspi.Instance->DLR=datalen-1;
        return HAL_QSPI_Receive(&hqspi,buf,5000);
    }
    
    //QSPI TX in block mode for data
    //buf : buffer address for TX data
    //datalen : TX data length
    //return : 0, OK
    //         others, error code
    HAL_StatusTypeDef QSPI_Transmit(uint8_t* buf,uint32_t datalen)
    {
        hqspi.Instance->DLR=datalen-1;
        return HAL_QSPI_Transmit(&hqspi,buf,5000);
    }
    
    extern char USERPath[4];
    /* USER CODE END 0 */
    
    /**
      * @brief  The application entry point.
      * @retval int
      */
    int main(void)
    {
      /* USER CODE BEGIN 1 */
    	Flash_mount_status = 0;
    	uint32_t FLASH_Read_Size;
    
    	char * dpath = "0:"; //Disk Path
        for(uint8_t i=0; i<4; i++)
        {
    	  USERPath[i] = *(dpath+i);
        }
    
    	const TCHAR* filepath = "0:test.txt";
      /* USER CODE END 1 */
    
      /* MCU Configuration--------------------------------------------------------*/
    
      /* Reset of all peripherals, Initializes the Flash interface and the Systick. */
      HAL_Init();
    
      /* USER CODE BEGIN Init */
    
      /* USER CODE END Init */
    
      /* Configure the system clock */
      SystemClock_Config();
    
      /* USER CODE BEGIN SysInit */
    
      /* USER CODE END SysInit */
    
      /* Initialize all configured peripherals */
      MX_GPIO_Init();
      MX_USART1_UART_Init();
      MX_QUADSPI_Init();
      MX_FATFS_Init();
      /* USER CODE BEGIN 2 */
      PY_usDelayTest();
      PY_usDelayOptimize();
    
      HAL_UART_Receive_IT(&huart1, uart1_rx, 1);
    
      W25QXX_Init();
    
      /* USER CODE END 2 */
    
      /* Infinite loop */
      /* USER CODE BEGIN WHILE */
      while (1)
      {
    		 if(cmd==0x01) //Read ID
    		 {
    			  cmd = 0;
    
    			  printf("Flash ID = 0x%x\r\n\r\n",  W25QXX_ReadID());
    		      printf("W25Q80_ID: 0XEF13\r\n");
    		      printf("W25Q16_ID: 0XEF14\r\n");
    		      printf("W25Q32_ID: 0XEF15\r\n");
    		      printf("W25Q64_ID: 0XEF16\r\n");
    		      printf("W25Q128_ID: 0XEF17\r\n");
    		      printf("W25Q256_ID: 0XEF18\r\n");
    		      printf("W25Q512_ID: 0XEF18\r\n");
    		      printf("W25Q1024_ID: 0XEF20\r\n");
    		  }
    	     else if(cmd==2) //Flash File System Mount
    	     {
    	    	 cmd = 0;
    
    	    	 retFLASH=f_mount(&USERFatFS, (TCHAR const*)USERPath, 1);
    	    	    		 if (retFLASH != FR_OK)
    	    	    		 {
    	    	    		   printf("File system mount failure: %d\r\n", retFLASH);
    
    	    	    		   if(retFLASH==FR_NO_FILESYSTEM)
    	    	    		   {
    	    	    			   printf("No file system. Now to format......\r\n");
    	    	    			   retFLASH = f_mkfs((TCHAR const*)USERPath, FM_FAT, 1024, FATS_Buff, sizeof(FATS_Buff)); //FLASH formatting
    	    	    			   if(retFLASH == FR_OK)
    	    	    			   {
    	    	                      printf("FLASH formatting success!\r\n");
    	    	    			   }
    	    	    				else
    	    	    			   {
    	    	    				  printf("FLASH formatting failure!\r\n");
    	    	    			   }
    
    	    	    		   }
    	    	    		 }
    	    	    		 else
    	    	    		 {
    	    	    			 Flash_mount_status = 1;
    	    	    			 printf("File system mount success\r\n");
    	    	    		 }
    	     }
    
    		 else if(cmd==3) //File creation and write
    		 {
    				  cmd = 0;
    
    				  if(Flash_mount_status==0) printf("\r\nFLASH File system not mounted: %d\r\n",retFLASH);
    				  else
    				  {
    						retFLASH = f_open( &file, filepath, FA_CREATE_ALWAYS | FA_WRITE );  //Open or create file
    						if(retFLASH == FR_OK)
    						{
    							printf("\r\nFile open or creation successful\r\n");
    
    							retFLASH = f_write( &file, (const void *)WBuffer, sizeof(WBuffer), &byteswritten); //Write data
    
    							if(retFLASH == FR_OK)
    							{
    								printf("\r\nFile write successful\r\n");
    
    							}
    							else
    							{
    								printf("\r\nFile write error: %d\r\n",retFLASH);
    							}
    
    							f_close(&file);   //Close file
    						}
    						else
    						{
    							printf("\r\nFile open or creation error %d\r\n",retFLASH);
    						}
    				   }
    
    	    }
    
    	    else if(cmd==4) //File read
    	    {
    				  cmd = 0;
    
    				  if(Flash_mount_status==0) printf("\r\nFLASH File system not mounted: %d\r\n",retFLASH);
    				  else
    				  {
    						retFLASH = f_open( &file, filepath, FA_OPEN_EXISTING | FA_READ); //Open file
    						if(retFLASH == FR_OK)
    						{
    							printf("\r\nFile open successful\r\n");
    
    							retFLASH = f_read( &file, (void *)rBuffer, sizeof(rBuffer), &bytesread); //Read data
    
    							if(retFLASH == FR_OK)
    							{
    								printf("\r\nFile read successful\r\n");
    								PY_Delay_us_t(200000);
    
    								FLASH_Read_Size = sizeof(rBuffer);
    								for(uint16_t i = 0;i < FLASH_Read_Size;i++)
    								{
    									printf("%d ", rBuffer[i]);
    								}
    								printf("\r\n");
    
    							}
    							else
    							{
    								printf("\r\nFile read error: %d\r\n", retFLASH);
    							}
    							f_close(&file); //Close file
    						}
    						else
    						{
    							printf("\r\nFile open error: %d\r\n", retFLASH);
    						}
    				  }
    
    		}
    
    		else if(cmd==5) //File locating write
    	    {
    				  cmd = 0;
    
    				  if(Flash_mount_status==0) printf("\r\nFLASH File system not mounted: %d\r\n",retFLASH);
    				  else
    				  {
    						retFLASH = f_open( &file, filepath, FA_CREATE_ALWAYS | FA_WRITE);  //Open or create file
    						if(retFLASH == FR_OK)
    						{
    							printf("\r\nFile open or creation successful\r\n");
    
    							retFLASH=f_lseek( &file, f_tell(&file) + sizeof(WBuffer) ); //move file operation pointer, f_tell(&file) gets file head locating
    
    							if(retFLASH == FR_OK)
    							{
    
    								retFLASH = f_write( &file, (const void *)WBuffer, sizeof(WBuffer), &byteswritten);
    								if(retFLASH == FR_OK)
    								{
    									printf("\r\nFile locating write successful\r\n");
    								}
    								else
    								{
    									printf("\r\nFile locating write error: %d\r\n", retFLASH);
    								}
    
    							}
    							else
    							{
    								printf("\r\nFile pointer error: %d\r\n",retFLASH);
    							}
    
    							f_close(&file);   //Close file
    						}
    						else
    						{
    							printf("\r\nFile open or creation error %d\r\n",retFLASH);
    						}
    				  }
    		}
    
    	    else if(cmd==6) //File locating read
    		{
    				  cmd = 0;
    
    				  if(Flash_mount_status==0) printf("\r\nFLASH File system not mounted: %d\r\n",retFLASH);
    				  else
    				  {
    						retFLASH = f_open(&file, filepath, FA_OPEN_EXISTING | FA_READ); //Open file
    						if(retFLASH == FR_OK)
    						{
    							printf("\r\nFile open successful\r\n");
    
    							retFLASH =  f_lseek(&file,f_tell(&file)+ sizeof(WBuffer)/2); //move file operation pointer, f_tell(&file) gets file head locating
    
    							if(retFLASH == FR_OK)
    							{
    								retFLASH = f_read( &file, (void *)rBuffer, sizeof(rBuffer), &bytesread);
    								if(retFLASH == FR_OK)
    								{
    									printf("\r\nFile locating read successful\r\n");
    									PY_Delay_us_t(200000);
    
    									FLASH_Read_Size = sizeof(rBuffer);
    									for(uint16_t i = 0;i < FLASH_Read_Size;i++)
    									{
    										printf("%d ",rBuffer[i]);
    									}
    									printf("\r\n");
    								}
    								else
    								{
    									printf("\r\nFile locating read error: %d\r\n",retFLASH);
    								}
    							}
    							else
    							{
    								printf("\r\nFile pointer error: %d\r\n",retFLASH);
    							}
    							f_close(&file);
    						}
    						else
    						{
    							printf("\r\nFile open error: %d\r\n",retFLASH);
    						}
    				  }
    	     }
    
        /* USER CODE END WHILE */
    
        /* USER CODE BEGIN 3 */
      }
      /* USER CODE END 3 */
    }
    
    /**
      * @brief System Clock Configuration
      * @retval None
      */
    void SystemClock_Config(void)
    {
      RCC_OscInitTypeDef RCC_OscInitStruct = {0};
      RCC_ClkInitTypeDef RCC_ClkInitStruct = {0};
    
      /** Supply configuration update enable
      */
      HAL_PWREx_ConfigSupply(PWR_LDO_SUPPLY);
    
      /** Configure the main internal regulator output voltage
      */
      __HAL_PWR_VOLTAGESCALING_CONFIG(PWR_REGULATOR_VOLTAGE_SCALE1);
    
      while(!__HAL_PWR_GET_FLAG(PWR_FLAG_VOSRDY)) {}
    
      __HAL_RCC_SYSCFG_CLK_ENABLE();
      __HAL_PWR_VOLTAGESCALING_CONFIG(PWR_REGULATOR_VOLTAGE_SCALE0);
    
      while(!__HAL_PWR_GET_FLAG(PWR_FLAG_VOSRDY)) {}
    
      /** Initializes the RCC Oscillators according to the specified parameters
      * in the RCC_OscInitTypeDef structure.
      */
      RCC_OscInitStruct.OscillatorType = RCC_OSCILLATORTYPE_HSI;
      RCC_OscInitStruct.HSIState = RCC_HSI_DIV1;
      RCC_OscInitStruct.HSICalibrationValue = RCC_HSICALIBRATION_DEFAULT;
      RCC_OscInitStruct.PLL.PLLState = RCC_PLL_ON;
      RCC_OscInitStruct.PLL.PLLSource = RCC_PLLSOURCE_HSI;
      RCC_OscInitStruct.PLL.PLLM = 4;
      RCC_OscInitStruct.PLL.PLLN = 60;
      RCC_OscInitStruct.PLL.PLLP = 2;
      RCC_OscInitStruct.PLL.PLLQ = 2;
      RCC_OscInitStruct.PLL.PLLR = 2;
      RCC_OscInitStruct.PLL.PLLRGE = RCC_PLL1VCIRANGE_3;
      RCC_OscInitStruct.PLL.PLLVCOSEL = RCC_PLL1VCOWIDE;
      RCC_OscInitStruct.PLL.PLLFRACN = 0;
      if (HAL_RCC_OscConfig(&RCC_OscInitStruct) != HAL_OK)
      {
        Error_Handler();
      }
    
      /** Initializes the CPU, AHB and APB buses clocks
      */
      RCC_ClkInitStruct.ClockType = RCC_CLOCKTYPE_HCLK|RCC_CLOCKTYPE_SYSCLK
                                  |RCC_CLOCKTYPE_PCLK1|RCC_CLOCKTYPE_PCLK2
                                  |RCC_CLOCKTYPE_D3PCLK1|RCC_CLOCKTYPE_D1PCLK1;
      RCC_ClkInitStruct.SYSCLKSource = RCC_SYSCLKSOURCE_PLLCLK;
      RCC_ClkInitStruct.SYSCLKDivider = RCC_SYSCLK_DIV1;
      RCC_ClkInitStruct.AHBCLKDivider = RCC_HCLK_DIV2;
      RCC_ClkInitStruct.APB3CLKDivider = RCC_APB3_DIV2;
      RCC_ClkInitStruct.APB1CLKDivider = RCC_APB1_DIV2;
      RCC_ClkInitStruct.APB2CLKDivider = RCC_APB2_DIV2;
      RCC_ClkInitStruct.APB4CLKDivider = RCC_APB4_DIV2;
    
      if (HAL_RCC_ClockConfig(&RCC_ClkInitStruct, FLASH_LATENCY_4) != HAL_OK)
      {
        Error_Handler();
      }
    }
    
    /**
      * @brief QUADSPI Initialization Function
      * @param None
      * @retval None
      */
    static void MX_QUADSPI_Init(void)
    {
    
      /* USER CODE BEGIN QUADSPI_Init 0 */
    
      /* USER CODE END QUADSPI_Init 0 */
    
      /* USER CODE BEGIN QUADSPI_Init 1 */
    
      /* USER CODE END QUADSPI_Init 1 */
      /* QUADSPI parameter configuration*/
      hqspi.Instance = QUADSPI;
      hqspi.Init.ClockPrescaler = 9;
      hqspi.Init.FifoThreshold = 4;
      hqspi.Init.SampleShifting = QSPI_SAMPLE_SHIFTING_HALFCYCLE;
      hqspi.Init.FlashSize = 25;
      hqspi.Init.ChipSelectHighTime = QSPI_CS_HIGH_TIME_5_CYCLE;
      hqspi.Init.ClockMode = QSPI_CLOCK_MODE_0;
      hqspi.Init.FlashID = QSPI_FLASH_ID_1;
      hqspi.Init.DualFlash = QSPI_DUALFLASH_DISABLE;
      if (HAL_QSPI_Init(&hqspi) != HAL_OK)
      {
        Error_Handler();
      }
      /* USER CODE BEGIN QUADSPI_Init 2 */
    
      /* USER CODE END QUADSPI_Init 2 */
    
    }
    
    /**
      * @brief USART1 Initialization Function
      * @param None
      * @retval None
      */
    static void MX_USART1_UART_Init(void)
    {
    
      /* USER CODE BEGIN USART1_Init 0 */
    
      /* USER CODE END USART1_Init 0 */
    
      /* USER CODE BEGIN USART1_Init 1 */
    
      /* USER CODE END USART1_Init 1 */
      huart1.Instance = USART1;
      huart1.Init.BaudRate = 115200;
      huart1.Init.WordLength = UART_WORDLENGTH_8B;
      huart1.Init.StopBits = UART_STOPBITS_1;
      huart1.Init.Parity = UART_PARITY_NONE;
      huart1.Init.Mode = UART_MODE_TX_RX;
      huart1.Init.HwFlowCtl = UART_HWCONTROL_NONE;
      huart1.Init.OverSampling = UART_OVERSAMPLING_16;
      huart1.Init.OneBitSampling = UART_ONE_BIT_SAMPLE_DISABLE;
      huart1.Init.ClockPrescaler = UART_PRESCALER_DIV1;
      huart1.AdvancedInit.AdvFeatureInit = UART_ADVFEATURE_NO_INIT;
      if (HAL_UART_Init(&huart1) != HAL_OK)
      {
        Error_Handler();
      }
      if (HAL_UARTEx_SetTxFifoThreshold(&huart1, UART_TXFIFO_THRESHOLD_1_8) != HAL_OK)
      {
        Error_Handler();
      }
      if (HAL_UARTEx_SetRxFifoThreshold(&huart1, UART_RXFIFO_THRESHOLD_1_8) != HAL_OK)
      {
        Error_Handler();
      }
      if (HAL_UARTEx_DisableFifoMode(&huart1) != HAL_OK)
      {
        Error_Handler();
      }
      /* USER CODE BEGIN USART1_Init 2 */
    
      /* USER CODE END USART1_Init 2 */
    
    }
    
    /**
      * @brief GPIO Initialization Function
      * @param None
      * @retval None
      */
    static void MX_GPIO_Init(void)
    {
    
      /* GPIO Ports Clock Enable */
      __HAL_RCC_GPIOE_CLK_ENABLE();
      __HAL_RCC_GPIOB_CLK_ENABLE();
      __HAL_RCC_GPIOD_CLK_ENABLE();
      __HAL_RCC_GPIOA_CLK_ENABLE();
    
    }
    
    /* USER CODE BEGIN 4 */
    void HAL_UART_RxCpltCallback(UART_HandleTypeDef *huart)
    {
    	if(huart==&huart1)
    	{
    		cmd = uart1_rx[0];
    		HAL_UART_Receive_IT(&huart1, uart1_rx, 1);
    	}
    
    }
    /* USER CODE END 4 */
    
    /**
      * @brief  This function is executed in case of error occurrence.
      * @retval None
      */
    void Error_Handler(void)
    {
      /* USER CODE BEGIN Error_Handler_Debug */
      /* User can add his own implementation to report the HAL error return state */
      __disable_irq();
      while (1)
      {
      }
      /* USER CODE END Error_Handler_Debug */
    }
    
    #ifdef  USE_FULL_ASSERT
    /**
      * @brief  Reports the name of the source file and the source line number
      *         where the assert_param error has occurred.
      * @param  file: pointer to the source file name
      * @param  line: assert_param error line source number
      * @retval None
      */
    void assert_failed(uint8_t *file, uint32_t line)
    {
      /* USER CODE BEGIN 6 */
      /* User can add his own implementation to report the file name and line number,
         ex: printf("Wrong parameters value: file %s on line %d\r\n", file, line) */
      /* USER CODE END 6 */
    }
    #endif /* USE_FULL_ASSERT */
    
    
    
    
    • 1
    • 2
    • 3
    • 4
    • 5
    • 6
    • 7
    • 8
    • 9
    • 10
    • 11
    • 12
    • 13
    • 14
    • 15
    • 16
    • 17
    • 18
    • 19
    • 20
    • 21
    • 22
    • 23
    • 24
    • 25
    • 26
    • 27
    • 28
    • 29
    • 30
    • 31
    • 32
    • 33
    • 34
    • 35
    • 36
    • 37
    • 38
    • 39
    • 40
    • 41
    • 42
    • 43
    • 44
    • 45
    • 46
    • 47
    • 48
    • 49
    • 50
    • 51
    • 52
    • 53
    • 54
    • 55
    • 56
    • 57
    • 58
    • 59
    • 60
    • 61
    • 62
    • 63
    • 64
    • 65
    • 66
    • 67
    • 68
    • 69
    • 70
    • 71
    • 72
    • 73
    • 74
    • 75
    • 76
    • 77
    • 78
    • 79
    • 80
    • 81
    • 82
    • 83
    • 84
    • 85
    • 86
    • 87
    • 88
    • 89
    • 90
    • 91
    • 92
    • 93
    • 94
    • 95
    • 96
    • 97
    • 98
    • 99
    • 100
    • 101
    • 102
    • 103
    • 104
    • 105
    • 106
    • 107
    • 108
    • 109
    • 110
    • 111
    • 112
    • 113
    • 114
    • 115
    • 116
    • 117
    • 118
    • 119
    • 120
    • 121
    • 122
    • 123
    • 124
    • 125
    • 126
    • 127
    • 128
    • 129
    • 130
    • 131
    • 132
    • 133
    • 134
    • 135
    • 136
    • 137
    • 138
    • 139
    • 140
    • 141
    • 142
    • 143
    • 144
    • 145
    • 146
    • 147
    • 148
    • 149
    • 150
    • 151
    • 152
    • 153
    • 154
    • 155
    • 156
    • 157
    • 158
    • 159
    • 160
    • 161
    • 162
    • 163
    • 164
    • 165
    • 166
    • 167
    • 168
    • 169
    • 170
    • 171
    • 172
    • 173
    • 174
    • 175
    • 176
    • 177
    • 178
    • 179
    • 180
    • 181
    • 182
    • 183
    • 184
    • 185
    • 186
    • 187
    • 188
    • 189
    • 190
    • 191
    • 192
    • 193
    • 194
    • 195
    • 196
    • 197
    • 198
    • 199
    • 200
    • 201
    • 202
    • 203
    • 204
    • 205
    • 206
    • 207
    • 208
    • 209
    • 210
    • 211
    • 212
    • 213
    • 214
    • 215
    • 216
    • 217
    • 218
    • 219
    • 220
    • 221
    • 222
    • 223
    • 224
    • 225
    • 226
    • 227
    • 228
    • 229
    • 230
    • 231
    • 232
    • 233
    • 234
    • 235
    • 236
    • 237
    • 238
    • 239
    • 240
    • 241
    • 242
    • 243
    • 244
    • 245
    • 246
    • 247
    • 248
    • 249
    • 250
    • 251
    • 252
    • 253
    • 254
    • 255
    • 256
    • 257
    • 258
    • 259
    • 260
    • 261
    • 262
    • 263
    • 264
    • 265
    • 266
    • 267
    • 268
    • 269
    • 270
    • 271
    • 272
    • 273
    • 274
    • 275
    • 276
    • 277
    • 278
    • 279
    • 280
    • 281
    • 282
    • 283
    • 284
    • 285
    • 286
    • 287
    • 288
    • 289
    • 290
    • 291
    • 292
    • 293
    • 294
    • 295
    • 296
    • 297
    • 298
    • 299
    • 300
    • 301
    • 302
    • 303
    • 304
    • 305
    • 306
    • 307
    • 308
    • 309
    • 310
    • 311
    • 312
    • 313
    • 314
    • 315
    • 316
    • 317
    • 318
    • 319
    • 320
    • 321
    • 322
    • 323
    • 324
    • 325
    • 326
    • 327
    • 328
    • 329
    • 330
    • 331
    • 332
    • 333
    • 334
    • 335
    • 336
    • 337
    • 338
    • 339
    • 340
    • 341
    • 342
    • 343
    • 344
    • 345
    • 346
    • 347
    • 348
    • 349
    • 350
    • 351
    • 352
    • 353
    • 354
    • 355
    • 356
    • 357
    • 358
    • 359
    • 360
    • 361
    • 362
    • 363
    • 364
    • 365
    • 366
    • 367
    • 368
    • 369
    • 370
    • 371
    • 372
    • 373
    • 374
    • 375
    • 376
    • 377
    • 378
    • 379
    • 380
    • 381
    • 382
    • 383
    • 384
    • 385
    • 386
    • 387
    • 388
    • 389
    • 390
    • 391
    • 392
    • 393
    • 394
    • 395
    • 396
    • 397
    • 398
    • 399
    • 400
    • 401
    • 402
    • 403
    • 404
    • 405
    • 406
    • 407
    • 408
    • 409
    • 410
    • 411
    • 412
    • 413
    • 414
    • 415
    • 416
    • 417
    • 418
    • 419
    • 420
    • 421
    • 422
    • 423
    • 424
    • 425
    • 426
    • 427
    • 428
    • 429
    • 430
    • 431
    • 432
    • 433
    • 434
    • 435
    • 436
    • 437
    • 438
    • 439
    • 440
    • 441
    • 442
    • 443
    • 444
    • 445
    • 446
    • 447
    • 448
    • 449
    • 450
    • 451
    • 452
    • 453
    • 454
    • 455
    • 456
    • 457
    • 458
    • 459
    • 460
    • 461
    • 462
    • 463
    • 464
    • 465
    • 466
    • 467
    • 468
    • 469
    • 470
    • 471
    • 472
    • 473
    • 474
    • 475
    • 476
    • 477
    • 478
    • 479
    • 480
    • 481
    • 482
    • 483
    • 484
    • 485
    • 486
    • 487
    • 488
    • 489
    • 490
    • 491
    • 492
    • 493
    • 494
    • 495
    • 496
    • 497
    • 498
    • 499
    • 500
    • 501
    • 502
    • 503
    • 504
    • 505
    • 506
    • 507
    • 508
    • 509
    • 510
    • 511
    • 512
    • 513
    • 514
    • 515
    • 516
    • 517
    • 518
    • 519
    • 520
    • 521
    • 522
    • 523
    • 524
    • 525
    • 526
    • 527
    • 528
    • 529
    • 530
    • 531
    • 532
    • 533
    • 534
    • 535
    • 536
    • 537
    • 538
    • 539
    • 540
    • 541
    • 542
    • 543
    • 544
    • 545
    • 546
    • 547
    • 548
    • 549
    • 550
    • 551
    • 552
    • 553
    • 554
    • 555
    • 556
    • 557
    • 558
    • 559
    • 560
    • 561
    • 562
    • 563
    • 564
    • 565
    • 566
    • 567
    • 568
    • 569
    • 570
    • 571
    • 572
    • 573
    • 574
    • 575
    • 576
    • 577
    • 578
    • 579
    • 580
    • 581
    • 582
    • 583
    • 584
    • 585
    • 586
    • 587
    • 588
    • 589
    • 590
    • 591
    • 592
    • 593
    • 594
    • 595
    • 596
    • 597
    • 598
    • 599
    • 600
    • 601
    • 602
    • 603
    • 604
    • 605
    • 606
    • 607
    • 608
    • 609
    • 610
    • 611
    • 612
    • 613
    • 614
    • 615
    • 616
    • 617
    • 618
    • 619
    • 620
    • 621
    • 622
    • 623
    • 624
    • 625
    • 626
    • 627
    • 628
    • 629
    • 630
    • 631
    • 632
    • 633
    • 634
    • 635
    • 636
    • 637
    • 638
    • 639
    • 640
    • 641
    • 642
    • 643
    • 644
    • 645
    • 646
    • 647
    • 648
    • 649
    • 650
    • 651
    • 652
    • 653
    • 654
    • 655
    • 656
    • 657
    • 658
    • 659
    • 660
    • 661
    • 662
    • 663
    • 664
    • 665
    • 666
    • 667
    • 668
    • 669
    • 670
    • 671
    • 672
    • 673
    • 674
    • 675
    • 676
    • 677
    • 678
    • 679
    • 680
    • 681
    • 682
    • 683
    • 684
    • 685
    • 686
    • 687
    • 688
    • 689
    • 690
    • 691
    • 692
    • 693
    • 694
    • 695
    • 696
    • 697
    • 698
    • 699
    • 700
    • 701
    • 702
    • 703
    • 704

    STM32例程测试

    串口指令0x01测试效果如下:
    在这里插入图片描述
    串口指令0x02测试效果如下:
    在这里插入图片描述
    串口指令0x03测试效果如下:
    在这里插入图片描述
    串口指令0x04测试效果如下:
    在这里插入图片描述
    串口指令0x05测试效果如下:
    在这里插入图片描述
    串口指令0x06测试效果如下:
    在这里插入图片描述

    STM32例程下载

    STM32H750VBT6 QSPI总线FATS文件读写FLASH W25QXX例程下载

    –End–

  • 相关阅读:
    Java IO包中System.in,System.out,System.err简介说明
    SpringCloud面试百题集
    PowerShell脚本样本分析
    java计算机毕业设计云医疗自助就诊平台录屏源程序+mysql+系统+lw文档+远程调试
    问题 F: 逆序排列 两种方法
    Pytorch torch.optim.lr_scheduler API如何调整学习率
    MES系统看板管理,助力企业实现车间可视化!
    Java stream sorted使用 Comparator 进行多字段排序
    OSPF协议
    4.4 Go语言中的单元测试
  • 原文地址:https://blog.csdn.net/hwytree/article/details/130259462