• Yolov8有效涨点:YOLOv8-AM,添加多种注意力模块提高检测精度,含代码,超详细


    前言

    2023 年,Ultralytics 推出了最新版本的 YOLO 模型。注意力机制是提高模型性能最热门的方法之一。

    本次介绍的是YOLOv8-AM,它将注意力机制融入到原始的YOLOv8架构中。具体来说,我们分别采用四个注意力模块:卷积块注意力模块(CBAM)、全局注意力机制(GAM)、高效通道注意力(ECA)和随机注意力(SA)来设计改进模型并在数据集上进行测试。实验结果表明,基于ResBlock + CBAM(ResCBAM)的YOLOv8-AM模型在IoU 50(mAP 50)下的平均精度提到了2.2%,达到了state-of-the-art(SOTA)表现。相反,结合GAM的YOLOv8-AM模型获得了的mAP @50并不是一个令人满意的增强。因此,我们将ResBlock和GAM结合起来,引入ResGAM设计另一个新的YOLOv8-AM模型,获得一个较为满意的结果。

    目录

    前言

    注意力机制:

    Convolutional Block Attention Module

    Efficient Channel Attention

    Shuffle Attention

    Global Attention Mechanism

    实验结果(供参考)

    可论文指导--------->v jiabei-545

    改进代码(失效+ v 👆)


    注意力机制:
    带有YOLOv8-AM的结构图

    YOLOv8 架构由四个关键组件组成:Backbone、Neck、Head 和 Loss Function。 Backbone 融合了 Cross Stage Partial (CSP) 概念,具有减少计算负载、同时增强 CNN 学习能力的优势。如图所示,YOLOv8与采用C3模块的YOLOv5不同,采用C2f模块,该模块集成了C3模块和YOLOv7中的扩展ELAN(E-ELAN)概念。

    YOLOv8-AM模型架构详解,其中注意力模块为Shuffle Attention(SA)、Efficient Channel Attention(ECA)、Global Attention Mechanism(GAM)、ResBlock + Convolutional Block Attention Module(ResCBAM)

    Convolutional Block Attention Module
    CBAM架构

    CBAM 包括通道注意力(C-Attention)和空间注意力(S-Attention),如图所示。给定一个中间特征图,CBAM 通过等式依次推断出 1D 通道注意力图  和 2D 空间注意力图 。

    ResBlock + Convolutional Block Attention Module

    原理和resnet一样 

    1. # Ultralytics YOLO 🚀, AGPL-3.0 license
    2. # YOLOv8 object detection model with P3-P5 outputs. For Usage examples see https://docs.ultralytics.com/tasks/detect
    3. # Parameters
    4. nc: 9 # number of classes
    5. scales: # model compound scaling constants, i.e. 'model=yolov8n.yaml' will call yolov8.yaml with scale 'n'
    6. # [depth, width, max_channels]
    7. n: [0.33, 0.25, 1024] # YOLOv8n summary: 225 layers, 3157200 parameters, 3157184 gradients, 8.9 GFLOPs
    8. s: [0.33, 0.50, 1024] # YOLOv8s summary: 225 layers, 11166560 parameters, 11166544 gradients, 28.8 GFLOPs
    9. m: [0.67, 0.75, 768] # YOLOv8m summary: 295 layers, 25902640 parameters, 25902624 gradients, 79.3 GFLOPs
    10. l: [1.00, 1.00, 512] # YOLOv8l summary: 365 layers, 43691520 parameters, 43691504 gradients, 165.7 GFLOPs
    11. x: [1.00, 1.25, 512] # YOLOv8x summary: 365 layers, 68229648 parameters, 68229632 gradients, 258.5 GFLOPs
    12. # YOLOv8.0n backbone
    13. backbone:
    14. # [from, repeats, module, args]
    15. - [-1, 1, Conv, [64, 3, 2]] # 0-P1/2
    16. - [-1, 1, Conv, [128, 3, 2]] # 1-P2/4
    17. - [-1, 3, C2f, [128, True]]
    18. - [-1, 1, Conv, [256, 3, 2]] # 3-P3/8
    19. - [-1, 6, C2f, [256, True]]
    20. - [-1, 1, Conv, [512, 3, 2]] # 5-P4/16
    21. - [-1, 6, C2f, [512, True]]
    22. - [-1, 1, Conv, [1024, 3, 2]] # 7-P5/32
    23. - [-1, 3, C2f, [1024, True]]
    24. - [-1, 1, SPPF, [1024, 5]] # 9
    25. # YOLOv8.0n head
    26. head:
    27. - [-1, 1, nn.Upsample, [None, 2, 'nearest']]
    28. - [[-1, 6], 1, Concat, [1]] # cat backbone P4
    29. - [-1, 3, C2f, [512]] # 12
    30. - [-1, 1, ResBlock_CBAM, [512]]
    31. - [-1, 1, nn.Upsample, [None, 2, 'nearest']]
    32. - [[-1, 4], 1, Concat, [1]] # cat backbone P3
    33. - [-1, 3, C2f, [256]] # 16 (P3/8-small)
    34. - [-1, 1, ResBlock_CBAM, [256]]
    35. - [-1, 1, Conv, [256, 3, 2]]
    36. - [[-1, 12], 1, Concat, [1]] # cat head P4
    37. - [-1, 3, C2f, [512]] # 20 (P4/16-medium)
    38. - [-1, 1, ResBlock_CBAM, [512]]
    39. - [-1, 1, Conv, [512, 3, 2]]
    40. - [[-1, 9], 1, Concat, [1]] # cat head P5
    41. - [-1, 3, C2f, [1024]] # 24 (P5/32-large)
    42. - [-1, 1, ResBlock_CBAM, [1024]]
    43. - [[17, 21, 25], 1, Detect, [nc]] # Detect(P3, P4, P5)
    Efficient Channel Attention
    Efficient Channel Attention

    ECA 主要包含跨通道交互和具有自适应卷积核的一维卷积,如图 所示。跨通道交互代表了一种组合特征的新方法,增强了特定语义的特征表达。

    1. # Ultralytics YOLO 🚀, AGPL-3.0 license
    2. # YOLOv8 object detection model with P3-P5 outputs. For Usage examples see https://docs.ultralytics.com/tasks/detect
    3. # Parameters
    4. nc: 9 # number of classes
    5. scales: # model compound scaling constants, i.e. 'model=yolov8n.yaml' will call yolov8.yaml with scale 'n'
    6. # [depth, width, max_channels]
    7. n: [0.33, 0.25, 1024] # YOLOv8n summary: 225 layers, 3157200 parameters, 3157184 gradients, 8.9 GFLOPs
    8. s: [0.33, 0.50, 1024] # YOLOv8s summary: 225 layers, 11166560 parameters, 11166544 gradients, 28.8 GFLOPs
    9. m: [0.67, 0.75, 768] # YOLOv8m summary: 295 layers, 25902640 parameters, 25902624 gradients, 79.3 GFLOPs
    10. l: [1.00, 1.00, 512] # YOLOv8l summary: 365 layers, 43691520 parameters, 43691504 gradients, 165.7 GFLOPs
    11. x: [1.00, 1.25, 512] # YOLOv8x summary: 365 layers, 68229648 parameters, 68229632 gradients, 258.5 GFLOPs
    12. # YOLOv8.0n backbone
    13. backbone:
    14. # [from, repeats, module, args]
    15. - [-1, 1, Conv, [64, 3, 2]] # 0-P1/2
    16. - [-1, 1, Conv, [128, 3, 2]] # 1-P2/4
    17. - [-1, 3, C2f, [128, True]]
    18. - [-1, 1, Conv, [256, 3, 2]] # 3-P3/8
    19. - [-1, 6, C2f, [256, True]]
    20. - [-1, 1, Conv, [512, 3, 2]] # 5-P4/16
    21. - [-1, 6, C2f, [512, True]]
    22. - [-1, 1, Conv, [1024, 3, 2]] # 7-P5/32
    23. - [-1, 3, C2f, [1024, True]]
    24. - [-1, 1, SPPF, [1024, 5]] # 9
    25. # YOLOv8.0n head
    26. head:
    27. - [-1, 1, nn.Upsample, [None, 2, 'nearest']]
    28. - [[-1, 6], 1, Concat, [1]] # cat backbone P4
    29. - [-1, 3, C2f, [512]] # 12
    30. - [-1, 1, ECAAttention, [512]]
    31. - [-1, 1, nn.Upsample, [None, 2, 'nearest']]
    32. - [[-1, 4], 1, Concat, [1]] # cat backbone P3
    33. - [-1, 3, C2f, [256]] # 16 (P3/8-small)
    34. - [-1, 1, ECAAttention, [256]]
    35. - [-1, 1, Conv, [256, 3, 2]]
    36. - [[-1, 12], 1, Concat, [1]] # cat head P4
    37. - [-1, 3, C2f, [512]] # 20 (P4/16-medium)
    38. - [-1, 1, ECAAttention, [512]]
    39. - [-1, 1, Conv, [512, 3, 2]]
    40. - [[-1, 9], 1, Concat, [1]] # cat head P5
    41. - [-1, 3, C2f, [1024]] # 24 (P5/32-large)
    42. - [-1, 1, ECAAttention, [1024]]
    43. - [[17, 21, 25], 1, Detect, [nc]] # Detect(P3, P4, P5)
    Shuffle Attention
    Shuffle Attention

     SA将输入特征图分为不同的组,利用Shuffle Unit将通道注意力和空间注意力整合到每个组的一个块中,如图所示。随后,子特征被聚合,并且“ ShuffleNetV2 中使用的“Channel Shuffle”算子用于促进各种子特征之间的信息通信。对于通道注意力,SA 采用 GAP 来捕获和嵌入子特征。此外,使用带有 sigmoid 函数的简单门控机制来创建紧凑的函数,以促进精确和自适应的选择。

    1. # SA.yaml
    2. # Ultralytics YOLO 🚀, AGPL-3.0 license
    3. # YOLOv8 object detection model with P3-P5 outputs. For Usage examples see https://docs.ultralytics.com/tasks/detect
    4. # Parameters
    5. nc: 9 # number of classes
    6. scales: # model compound scaling constants, i.e. 'model=yolov8n.yaml' will call yolov8.yaml with scale 'n'
    7. # [depth, width, max_channels]
    8. n: [0.33, 0.25, 1024] # YOLOv8n summary: 225 layers, 3157200 parameters, 3157184 gradients, 8.9 GFLOPs
    9. s: [0.33, 0.50, 1024] # YOLOv8s summary: 225 layers, 11166560 parameters, 11166544 gradients, 28.8 GFLOPs
    10. m: [0.67, 0.75, 768] # YOLOv8m summary: 295 layers, 25902640 parameters, 25902624 gradients, 79.3 GFLOPs
    11. l: [1.00, 1.00, 512] # YOLOv8l summary: 365 layers, 43691520 parameters, 43691504 gradients, 165.7 GFLOPs
    12. x: [1.00, 1.25, 512] # YOLOv8x summary: 365 layers, 68229648 parameters, 68229632 gradients, 258.5 GFLOPs
    13. # YOLOv8.0n backbone
    14. backbone:
    15. # [from, repeats, module, args]
    16. - [-1, 1, Conv, [64, 3, 2]] # 0-P1/2
    17. - [-1, 1, Conv, [128, 3, 2]] # 1-P2/4
    18. - [-1, 3, C2f, [128, True]]
    19. - [-1, 1, Conv, [256, 3, 2]] # 3-P3/8
    20. - [-1, 6, C2f, [256, True]]
    21. - [-1, 1, Conv, [512, 3, 2]] # 5-P4/16
    22. - [-1, 6, C2f, [512, True]]
    23. - [-1, 1, Conv, [1024, 3, 2]] # 7-P5/32
    24. - [-1, 3, C2f, [1024, True]]
    25. - [-1, 1, SPPF, [1024, 5]] # 9
    26. # YOLOv8.0n head
    27. head:
    28. - [-1, 1, nn.Upsample, [None, 2, 'nearest']]
    29. - [[-1, 6], 1, Concat, [1]] # cat backbone P4
    30. - [-1, 3, C2f, [512]] # 12
    31. - [-1, 1, ShuffleAttention, [512]]
    32. - [-1, 1, nn.Upsample, [None, 2, 'nearest']]
    33. - [[-1, 4], 1, Concat, [1]] # cat backbone P3
    34. - [-1, 3, C2f, [256]] # 16 (P3/8-small)
    35. - [-1, 1, ShuffleAttention, [256]]
    36. - [-1, 1, Conv, [256, 3, 2]]
    37. - [[-1, 12], 1, Concat, [1]] # cat head P4
    38. - [-1, 3, C2f, [512]] # 20 (P4/16-medium)
    39. - [-1, 1, ShuffleAttention, [512]]
    40. - [-1, 1, Conv, [512, 3, 2]]
    41. - [[-1, 9], 1, Concat, [1]] # cat head P5
    42. - [-1, 3, C2f, [1024]] # 24 (P5/32-large)
    43. - [-1, 1, ShuffleAttention, [1024]]
    44. - [[17, 21, 25], 1, Detect, [nc]] # Detect(P3, P4, P5)
    Global Attention Mechanism
    Global Attention Mechanism

     GAM采用了CBAM提出的由通道注意力和空间注意力组成的主要架构,并重新设计了子模块,如图所示。此外,我在GAM内的各层之间添加了快捷连接,这使得输入能够更快地向前传播。

    1. # GAM.yaml
    2. # Ultralytics YOLO 🚀, AGPL-3.0 license
    3. # YOLOv8 object detection model with P3-P5 outputs. For Usage examples see https://docs.ultralytics.com/tasks/detect
    4. # Parameters
    5. nc: 9 # number of classes
    6. scales: # model compound scaling constants, i.e. 'model=yolov8n.yaml' will call yolov8.yaml with scale 'n'
    7. # [depth, width, max_channels]
    8. n: [0.33, 0.25, 1024] # YOLOv8n summary: 225 layers, 3157200 parameters, 3157184 gradients, 8.9 GFLOPs
    9. s: [0.33, 0.50, 1024] # YOLOv8s summary: 225 layers, 11166560 parameters, 11166544 gradients, 28.8 GFLOPs
    10. m: [0.67, 0.75, 768] # YOLOv8m summary: 295 layers, 25902640 parameters, 25902624 gradients, 79.3 GFLOPs
    11. l: [1.00, 1.00, 512] # YOLOv8l summary: 365 layers, 43691520 parameters, 43691504 gradients, 165.7 GFLOPs
    12. x: [1.00, 1.25, 512] # YOLOv8x summary: 365 layers, 68229648 parameters, 68229632 gradients, 258.5 GFLOPs
    13. # YOLOv8.0n backbone
    14. backbone:
    15. # [from, repeats, module, args]
    16. - [-1, 1, Conv, [64, 3, 2]] # 0-P1/2
    17. - [-1, 1, Conv, [128, 3, 2]] # 1-P2/4
    18. - [-1, 3, C2f, [128, True]]
    19. - [-1, 1, Conv, [256, 3, 2]] # 3-P3/8
    20. - [-1, 6, C2f, [256, True]]
    21. - [-1, 1, Conv, [512, 3, 2]] # 5-P4/16
    22. - [-1, 6, C2f, [512, True]]
    23. - [-1, 1, Conv, [1024, 3, 2]] # 7-P5/32
    24. - [-1, 3, C2f, [1024, True]]
    25. - [-1, 1, SPPF, [1024, 5]] # 9
    26. # YOLOv8.0n head
    27. head:
    28. - [-1, 1, nn.Upsample, [None, 2, 'nearest']]
    29. - [[-1, 6], 1, Concat, [1]] # cat backbone P4
    30. - [-1, 3, C2f, [512]] # 12
    31. - [-1, 1, GAM_Attention, [512,512]]
    32. - [-1, 1, nn.Upsample, [None, 2, 'nearest']]
    33. - [[-1, 4], 1, Concat, [1]] # cat backbone P3
    34. - [-1, 3, C2f, [256]] # 16 (P3/8-small)
    35. - [-1, 1, GAM_Attention, [256,256]]
    36. - [-1, 1, Conv, [256, 3, 2]]
    37. - [[-1, 12], 1, Concat, [1]] # cat head P4
    38. - [-1, 3, C2f, [512]] # 20 (P4/16-medium)
    39. - [-1, 1, GAM_Attention, [512,512]]
    40. - [-1, 1, Conv, [512, 3, 2]]
    41. - [[-1, 9], 1, Concat, [1]] # cat head P5
    42. - [-1, 3, C2f, [1024]] # 24 (P5/32-large)
    43. - [-1, 1, GAM_Attention, [1024,1024]]
    44. - [[17, 21, 25], 1, Detect, [nc]] # Detect(P3, P4, P5)
    ResBlock + Global Attention Mechanism

     原理和resnet一样

    实验结果(供参考)

    ResBlock + Convolutional Block Attention Module
    Shuffle Attention

    Efficient Channel Attention
    Global Attention Mechanism

    ResBlock + Global Attention Mechanism
    定量比较(Precision/Recall/F1/mAP)

    可论文指导--------->v jiabei-545
    改进代码(失效+ v 👆)

    链接: https://pan.baidu.com/s/1Fi7ghwJ6XiXrDDnoCvlvrQ?pwd=zk88 提取码: zk88 

    欢迎大家在评论区进行讨论

  • 相关阅读:
    发明专利一般多长时间受理
    C++宏的用法
    什么是周转时间?
    国密算法:利用python进行sm2非对称算法的实现,国密算法库gmssl的使用
    Spring Boot的创建和使用(JavaEE进阶系列2)
    半小时速通Python爬虫!GitHub开源的Python爬虫入门教程
    SpringSecurity初探(一)
    java基于ssm的电子资源管理系统 毕业设计
    Java 多线程写zip文件遇到的错误 write beyond end of stream!
    基于区块链的隐私保护数据共享
  • 原文地址:https://blog.csdn.net/m0_67647321/article/details/136281570