• MongoDB聚合运算符:$avg


    $avg运算符返回给定数值的平均值

    $avg可用于以下阶段:

    • $addFields阶段(从MongoDB 3.4开始可用)
    • $bucket阶段
    • $bucketAuto阶段
    • $group阶段
    • 包含$expr表达式的$match阶段
    • $project阶段
    • $replaceRoot阶段(从MongoDB 3.4开始可用)
    • $replaceWith阶段(从MongoDB 4.2开始可用)
    • $set阶段(从MongoDB 4.2开始可用)
    • $setWindowFields阶段(从MongoDB 5.0开始可用)

    语法

    { $avg: <expression> }
    
    • 1

    { $avg: [ <expression1>, <expression2> ... ]  }
    
    • 1

    使用

    非数值或缺失值

    $avg会忽略非数值,包括缺失值。如果平均值的所有操作数都是非数值,则
    返回空值。

    数组操作

    $group阶段,如果表达式解析为一个数组,则会被认为是非数值类型。对于其他支持的阶段:

    • 对于以单个表达式的情况,如果表达式解析为数组,则$avg会遍历数组对数字元素进行平均值运算。
    • 对于以表达式列表为操作数,如果其中任何表达式被解析为数组,则$avg会将数组视为非数值。

    举例

    $group阶段中使用$avg

    sales集合有下列的文档:

    { "_id" : 1, "item" : "abc", "price" : 10, "quantity" : 2, "date" : ISODate("2014-01-01T08:00:00Z") }
    { "_id" : 2, "item" : "jkl", "price" : 20, "quantity" : 1, "date" : ISODate("2014-02-03T09:00:00Z") }
    { "_id" : 3, "item" : "xyz", "price" : 5, "quantity" : 5, "date" : ISODate("2014-02-03T09:05:00Z") }
    { "_id" : 4, "item" : "abc", "price" : 10, "quantity" : 10, "date" : ISODate("2014-02-15T08:00:00Z") }
    { "_id" : 5, "item" : "xyz", "price" : 5, "quantity" : 10, "date" : ISODate("2014-02-15T09:12:00Z") }
    
    • 1
    • 2
    • 3
    • 4
    • 5

    下面的聚合按照item字段对文档进行分组,使用$avg计算分组的平均价格和平均文档数量:

    db.sales.aggregate(
       [
         {
           $group:
             {
               _id: "$item",
               avgAmount: { $avg: { $multiply: [ "$price", "$quantity" ] } },
               avgQuantity: { $avg: "$quantity" }
             }
         }
       ]
    )
    
    • 1
    • 2
    • 3
    • 4
    • 5
    • 6
    • 7
    • 8
    • 9
    • 10
    • 11
    • 12

    操作返回下面的结果:

    { "_id" : "xyz", "avgAmount" : 37.5, "avgQuantity" : 7.5 }
    { "_id" : "jkl", "avgAmount" : 20, "avgQuantity" : 1 }
    { "_id" : "abc", "avgAmount" : 60, "avgQuantity" : 6 }
    
    • 1
    • 2
    • 3

    $project阶段中使用$avg

    students集合包含下列文档:

    { "_id": 1, "quizzes": [ 10, 6, 7 ], "labs": [ 5, 8 ], "final": 80, "midterm": 75 }
    { "_id": 2, "quizzes": [ 9, 10 ], "labs": [ 8, 8 ], "final": 95, "midterm": 80 }
    { "_id": 3, "quizzes": [ 4, 5, 5 ], "labs": [ 6, 5 ], "final": 78, "midterm": 70 }
    
    • 1
    • 2
    • 3

    下面的例子在$project阶段中使用$avg计算测验、实验室、其中和期末平均得分:

    db.students.aggregate([
       { $project: { quizAvg: { $avg: "$quizzes"}, labAvg: { $avg: "$labs" }, examAvg: { $avg: [ "$final", "$midterm" ] } } }
    ])
    
    • 1
    • 2
    • 3

    操作返回下面的结果:

    { "_id" : 1, "quizAvg" : 7.666666666666667, "labAvg" : 6.5, "examAvg" : 77.5 }
    { "_id" : 2, "quizAvg" : 9.5, "labAvg" : 8, "examAvg" : 87.5 }
    { "_id" : 3, "quizAvg" : 4.666666666666667, "labAvg" : 5.5, "examAvg" : 74 }
    
    • 1
    • 2
    • 3

    $setWindowFields阶段使用$avg

    从MongoDB5.0开始支持。

    创建cakeSales集合包含了在加利福尼亚和华盛顿的蛋糕销售状态:

    db.cakeSales.insertMany( [
       { _id: 0, type: "chocolate", orderDate: new Date("2020-05-18T14:10:30Z"),
         state: "CA", price: 13, quantity: 120 },
       { _id: 1, type: "chocolate", orderDate: new Date("2021-03-20T11:30:05Z"),
         state: "WA", price: 14, quantity: 140 },
       { _id: 2, type: "vanilla", orderDate: new Date("2021-01-11T06:31:15Z"),
         state: "CA", price: 12, quantity: 145 },
       { _id: 3, type: "vanilla", orderDate: new Date("2020-02-08T13:13:23Z"),
         state: "WA", price: 13, quantity: 104 },
       { _id: 4, type: "strawberry", orderDate: new Date("2019-05-18T16:09:01Z"),
         state: "CA", price: 41, quantity: 162 },
       { _id: 5, type: "strawberry", orderDate: new Date("2019-01-08T06:12:03Z"),
         state: "WA", price: 43, quantity: 134 }
    ] )
    
    • 1
    • 2
    • 3
    • 4
    • 5
    • 6
    • 7
    • 8
    • 9
    • 10
    • 11
    • 12
    • 13
    • 14

    下面的例子在$setWindowFields阶段使用$avg运算符计算各州蛋糕销售数量的平均值:

    db.cakeSales.aggregate( [
       {
          $setWindowFields: {
             partitionBy: "$state",
             sortBy: { orderDate: 1 },
             output: {
                averageQuantityForState: {
                   $avg: "$quantity",
                   window: {
                      documents: [ "unbounded", "current" ]
                   }
                }
             }
          }
       }
    ] )
    
    • 1
    • 2
    • 3
    • 4
    • 5
    • 6
    • 7
    • 8
    • 9
    • 10
    • 11
    • 12
    • 13
    • 14
    • 15
    • 16

    在这个例子中:

    • partitionBy: "$state"根据state州对文档进行分区,包括CAWA两个分区
    • sortBy: { orderDate: 1}按照orderDate对分区文档升序排序,最早的orderDate排在最前面
    • output将文档窗口中文档中quantity的移动平均值设置给averageQuantityForState字段。窗口中包含的文档在unbounded下限和current文档之间,$avg返回从开始到当前文档quantity的移动平均值。

    在下面的输出结果中,averageQuantityForStateCAWAquantity的移动平均值:

    { "_id" : 4, "type" : "strawberry", "orderDate" : ISODate("2019-05-18T16:09:01Z"),
      "state" : "CA", "price" : 41, "quantity" : 162, "averageQuantityForState" : 162 }
    { "_id" : 0, "type" : "chocolate", "orderDate" : ISODate("2020-05-18T14:10:30Z"),
      "state" : "CA", "price" : 13, "quantity" : 120, "averageQuantityForState" : 141 }
    { "_id" : 2, "type" : "vanilla", "orderDate" : ISODate("2021-01-11T06:31:15Z"),
      "state" : "CA", "price" : 12, "quantity" : 145, "averageQuantityForState" : 142.33333333333334 }
    { "_id" : 5, "type" : "strawberry", "orderDate" : ISODate("2019-01-08T06:12:03Z"),
      "state" : "WA", "price" : 43, "quantity" : 134, "averageQuantityForState" : 134 }
    { "_id" : 3, "type" : "vanilla", "orderDate" : ISODate("2020-02-08T13:13:23Z"),
      "state" : "WA", "price" : 13, "quantity" : 104, "averageQuantityForState" : 119 }
    { "_id" : 1, "type" : "chocolate", "orderDate" : ISODate("2021-03-20T11:30:05Z"),
      "state" : "WA", "price" : 14, "quantity" : 140, "averageQuantityForState" : 126 }
    
    • 1
    • 2
    • 3
    • 4
    • 5
    • 6
    • 7
    • 8
    • 9
    • 10
    • 11
    • 12
  • 相关阅读:
    设计模式12-行为型设计模式-模板设计模式
    【路径遍历漏洞】查找、利用、预防
    KNN(k-Nearest Neighbor)算法原理
    析构函数和垃圾回收机制GC
    spring cloud实践
    Python花瓣雨
    (标签-ar|关键词-运算符)
    【Visual Leak Detector】源码编译 VLD 库
    【YOLO改进】换遍主流单阶段检测器主干网络(基于MMYOLO)
    WEB服务器的超级防护——安全WAF
  • 原文地址:https://blog.csdn.net/superatom01/article/details/136264466