在Elasticsearch(ES)集群中,节点根据其配置和角色可以分为以下几种主要类型:
Master Node(主节点): 主节点负责管理整个集群的元数据,如索引的创建、删除、分片分配等。它维护着集群的状态,并处理集群级别的变更操作。为了确保高可用性,通常会设置多个候选主节点,通过选举机制确定一个主节点,而其他候选节点则处于待命状态,当当前主节点不可用时进行接管。
Data Node(数据节点): 数据节点是存储实际数据的地方,它们负责执行索引和搜索操作。数据节点持有分片(shards),并参与文档的CRUD(创建、读取、更新、删除)操作以及搜索请求的执行。
Ingest Node(摄取节点): 摄取节点是一种特殊的节点,用于处理进入Elasticsearch前的数据预处理工作。它可以包含一系列的处理器管道,对数据进行清洗、转换、过滤等操作。
Coordinating Node(协调节点): 所有节点都可以充当协调节点的角色,不过通常客户端请求首先到达的是非数据节点或专门配置为仅承担此角色的节点。协调节点负责将客户端请求路由到适当的节点进行处理,并聚合返回结果。
Machine Learning Node(机器学习节点): 在Elasticsearch的X-Pack插件或更高级版本中,提供了机器学习功能。机器学习节点专用于运行复杂的分析任务,例如异常检测、预测分析等。
每个节点可以根据配置文件中的node.master、node.data等属性来定义其是否能够成为主节点、数据节点或两者皆可。通常建议集群设计时应考虑主节点与数据节点分离以提高系统稳定性和性能。此外,用户可以根据集群规模和需求调整不同类型的节点数量和配置,以实现最优的资源分配和负载均衡。
在Elasticsearch(简称ES)中,协调节点(Coordinator Node)是处理客户端请求的关键角色。当一个客户端向集群发送搜索、索引、更新或删除请求时,它可以将请求发送到任何集群中的节点。这个接收到请求的节点就充当了协调器的角色。
协调节点的主要职责包括:
路由请求:根据文档的索引和分片信息决定哪些数据节点包含请求所需的数据,并将请求转发给相应的主或者副本分片所在的节点。
聚合响应:从各个数据节点收集查询结果,并合并这些结果,执行排序、聚合等操作,最终返回给客户端一个完整的响应。
负载均衡:在多个数据节点之间平衡请求负载,确保集群资源的有效利用。
错误处理:如果某个数据节点在处理请求时发生故障,协调节点会负责重新路由请求至其他可用的数据节点。
Elasticsearch(ES)最初是作为全文搜索引擎和分析引擎而设计的,主要用于处理结构化、半结构化和非结构化的文本数据。然而,在近年来的发展中,Elasticsearch 增加了对向量存储与搜索的支持,使其也能够作为向量数据库使用。
向量数据库是一种特殊类型的数据库系统,专门用于存储、索引和检索高维向量数据,这些数据在诸如计算机视觉、自然语言处理、推荐系统等领域的机器学习应用中非常常见。例如,深度学习模型产生的特征向量可以用来表示图像、文本或用户兴趣等信息。
具体到 Elasticsearch 的向量功能:
向量字段类型:Elasticsearch 中引入了 dense_vector 字段类型,允许用户存储固定长度的浮点数数组,即向量数据。
相似性搜索:支持基于向量距离度量(如余弦相似度)进行高效的相似性搜索,能够在大规模数据集上快速找到与查询向量最相似的记录。
近实时:保持了其近实时搜索的特点,这意味着向量数据一旦被索引,几乎可以立即用于查询。
可扩展性:得益于 Elasticsearch 的分布式架构,它可以轻松处理 PB 级别的向量数据,并且随着集群规模的增长,可以水平扩展以应对更大的数据量和更复杂的查询负载。
聚合与分析:除了基本的相似性搜索外,还可以结合其他 Elasticsearch 功能,实现对向量数据的复杂分析和可视化。
集成:与 Elastic Stack 的其余组件(如 Kibana 和 Logstash)紧密集成,为用户提供了一个端到端的解决方案,包括数据摄取、分析和展示。
因此,尽管 Elasticsearch 不是传统意义上的纯向量数据库,但它通过增强对向量数据的支持,已经在很多场景下扮演了向量数据库的角色,并且在AI和ML领域具有重要的实用价值。
Elasticsearch(ES)和Milvus是两种不同类型的数据库系统,它们的设计目标、主要用途以及数据模型存在显著差异。
Elasticsearch:
dense_vector字段用于向量数据。Milvus:
总结来说:
在预处理阶段生成或训练词向量的主要方法有以下几种:
Word2Vec:
GloVe (Global Vectors for Word Representation):
FastText:
神经网络语言模型(NNLMs):
Transformer-based Models:
Sentence Encoders:
Universal Sentence Encoder和BERT-as-service可以直接提供整个句子的向量表示。预训练语言模型的转换(Fine-tuning):
每种方法都有其特点和适用场景,选择哪种方法取决于应用场景的需求以及资源限制。通常情况下,这些预训练模型能够在大量的未标注文本数据上学习到丰富的语言结构和语义信息,因此所得到的词向量在许多自然语言处理任务中表现优秀。
当然,目前有很多开源服务和工具可以用来生成或训练词向量。以下是一些流行的开源库和服务:
Gensim:
TensorFlow / TensorFlow Hub:
PyTorch / Hugging Face Transformers:
fastText:
Spacy:
Apache MXNet 和 ONNX:
DeepPavlov:
这些开源服务通常都提供了详细的文档和API,使得开发者可以根据自己的需求选择合适的模型,并在本地进行训练或者直接应用已有的预训练模型来生成词向量。
当然,目前有很多开源服务和工具可以用来生成或训练词向量。以下是一些流行的开源库和服务:
Gensim:
TensorFlow / TensorFlow Hub:
PyTorch / Hugging Face Transformers:
fastText:
Spacy:
Apache MXNet 和 ONNX:
DeepPavlov:
这些开源服务通常都提供了详细的文档和API,使得开发者可以根据自己的需求选择合适的模型,并在本地进行训练或者直接应用已有的预训练模型来生成词向量。
Milvus 与 ElasticSearch 有什么区别?这是我们经常被问到的问题。
两者都是面向非结构化数据做分析,ES 这边更多是作用在 文本这个点上,也是文本搜索的事实标准;Milvus 则作用在 embedding这个数据基础上,提供的是一种泛化的搜索能力,并不会像 ES 这样面向一种具体的非结构化数据。
整体上来看,其实整个分析和搜索的机制,ES 和 Milvus 还是有很大的相似性的,基本上大家都做同样的一件事情——把非结构化数据映射到一个空间里面,在空间里面做语义的相似度分析。像 ES 文本和查询条件通过 TF-IDF 这样一个统计量去放到子向量空间里面去做分析;Milvus 则是更多是把多样化的非结构化数据去经过一些神经网络作为 Encoder,映射到 embedding 空间里面去做分析。
参考:【2021 ECUG Con 干货分享】郭人通:Milvus:探索云原生的向量搜索引擎_数据 (sohu.com)