x = torch.randn(10, 1, 100)
rnnCell = nn.RNNCell(input_size=100, hidden_size=30)
ht = torch.zeros(1, 30)
out = []
for xt in x:
ht = rnnCell(xt, ht)
out.append(ht)
print('输出总时间步:', len(out),',每个时间步输出的形状:',out[0].shape)
rnn = nn.LSTM(input_size=100, hidden_size=20, num_layers=4)
print(rnn)
x = torch.randn(10, 3, 100)
out, (h, c) = rnn(x)
print(out.shape, h.shape, c.shape)
x = torch.rand(3,3,4)
id = [0,1]
c = x[id].transpose(0,1)
print(x)
print(c)
print(c.shape)
input_size = 1
hidden_size = 256
output_size = 1
class Net(nn.Module):
def __init__(self):
super(Net, self).__init__()
self.rnn = nn.LSTM(input_size=input_size, hidden_size=hidden_size, num_layers=2)
self.linear = nn.Linear(hidden_size, output_size)
def forward(self, x):
_, (h, c) = self.rnn(x)
h = h[-1]
h = self.linear(h)
return h
model = Net()
criterion = nn.MSELoss()
optimizer = torch.optim.Adam(model.parameters(), lr=0.001)
num_time_steps =200
start = 0
time_steps = np.linspace(start, start+20, num_time_steps)
data = np.sin(time_steps)
data = data.reshape(num_time_steps)
horizon_len = 10
list = [1, 2, 3]
for iter in range(500):
batch_size = 32
s = random.sample(range(num_time_steps-horizon_len-1), batch_size)
train_data_x = []
train_data_y = []
for s_i in s:
train_data_x.append(data[s_i:s_i+horizon_len])
train_data_y.append(data[s_i + horizon_len])
train_data_x = torch.tensor(train_data_x, dtype=torch.float32).T
train_data_x = train_data_x.unsqueeze(2).to(torch.float32)
train_data_y = torch.tensor(train_data_y, dtype=torch.float64).reshape(-1, batch_size, 1).to(torch.float32)
output = model(train_data_x)
loss = criterion(output, train_data_y)
model.zero_grad()
loss.backward()
optimizer.step()
if iter % 50 == 0:
print("Iteration: {} loss {}".format(iter, loss.item()))
num_time_steps =200
start = 0
time_steps = np.linspace(start, start+20, num=num_time_steps)
data = np.sin(time_steps)
predictions1 = []
h = torch.zeros(1, 1, hidden_size)
c = torch.zeros(1, 1, hidden_size)
input = deque(data[0:horizon_len], maxlen=horizon_len)
predictions1.extend(data[0:horizon_len])
for i in range(horizon_len, len(data)*5):
input_tensor = torch.tensor(input).to(torch.float32)
input_tensor = input_tensor.view(horizon_len, 1, 1)
pred= model(input_tensor)
input.append(pred.detach().numpy().ravel()[0])
predictions1.append(pred.detach().numpy().ravel()[0])
plt.figure()
plt.plot(data)
plt.plot(predictions1)
plt.legend(['sin wave','pred1'])
plt.show()

- 1
- 2
- 3
- 4
- 5
- 6
- 7
- 8
- 9
- 10
- 11
- 12
- 13
- 14
- 15
- 16
- 17
- 18
- 19
- 20
- 21
- 22
- 23
- 24
- 25
- 26
- 27
- 28
- 29
- 30
- 31
- 32
- 33
- 34
- 35
- 36
- 37
- 38
- 39
- 40
- 41
- 42
- 43
- 44
- 45
- 46
- 47
- 48
- 49
- 50
- 51
- 52
- 53
- 54
- 55
- 56
- 57
- 58
- 59
- 60
- 61
- 62
- 63
- 64
- 65
- 66
- 67
- 68
- 69
- 70
- 71
- 72
- 73
- 74
- 75
- 76
- 77
- 78
- 79
- 80
- 81
- 82
- 83
- 84
- 85
- 86
- 87
- 88
- 89
- 90
- 91
- 92
- 93
- 94
- 95
- 96
- 97
- 98
- 99
- 100
- 101
- 102
- 103
- 104
- 105
- 106
- 107
- 108
- 109
- 110
- 111
- 112
- 113
- 114
- 115
- 116
- 117
- 118
- 119
- 120
