• 深度学习神经网络实战:多层感知机,手写数字识别


    目的

    利用tensorflow.js训练模型,搭建神经网络模型,完成手写数字识别

    设计

    简单三层神经网络

    • 输入层
      28*28个神经原,代表每一张手写数字图片的灰度
    • 隐藏层
      100个神经原
    • 输出层
      -10个神经原,分别代表10个数字

    代码

    // 导入 TensorFlow.js 库
    import tf from "@tensorflow/tfjs";
    import * as tfjsnode from "@tensorflow/tfjs-node";
    import * as tfvis from "@tensorflow/tfjs-vis";
    import fs from "fs";
    import plot from "nodeplotlib";
    // 定义模型
    const model = tf.sequential();
    
    // 添加输入层
    model.add(
      tf.layers.dense({ units: 64, inputShape: [784], activation: "relu" })
    );
    
    // 添加隐藏层
    model.add(tf.layers.dense({ units: 100, activation: "relu" }));
    
    // 添加输出层
    model.add(tf.layers.dense({ units: 10, activation: "softmax" }));
    
    // 编译模型
    model.compile({
      optimizer: "sgd",
      loss: "categoricalCrossentropy",
      metrics: ["accuracy"],
    });
    const trainDataLen = 3000;
    const testDataLen = 2000;
    
    // 加载 MNIST 数据集
    import pkg from "mnist";
    const { set: Dataset } = pkg;
    const set = Dataset(trainDataLen, testDataLen);
    const trainingSet = set.training;
    const testSet = set.test;
    
    const trainXs = [];
    const testXs = [];
    
    const trainLabels = [];
    const testLabels = [];
    
    for (let i = 0; i < trainingSet.length; i++) {
      trainXs.push(trainingSet[i].input);
      trainLabels.push(trainingSet[i].output.indexOf(1));
    }
    
    for (let i = 0; i < testSet.length; i++) {
      testXs.push(testSet[i].input);
      testLabels.push(testSet[i].output.indexOf(1));
    }
    
    // 准备数据
    const trainXsTensor = tf.tensor(trainXs, [trainDataLen, 784]);
    const trainYsOneHot = tf.oneHot(trainLabels, 10);
    
    //记录每轮模型训练中的损失和精度,为了绘制曲线图
    var accPlot = [];
    var lossPlot = [];
    
    // 模型训练
    model
      .fit(trainXsTensor, trainYsOneHot, {
        batchSize: 64,
        epochs: 100,
        validationSplit: 0.2,
        callbacks: {
          onEpochBegin: (epoch) => console.log(`Epoch ${epoch + 1} started...`),
          onEpochEnd: async (epoch, logs) => {
            console.log(
              `Epoch ${epoch + 1} completed. Loss: ${logs.loss.toFixed(
                3
              )}, Accuracy: ${logs.acc.toFixed(3)}`
            );
            //记录loss和acc,绘制曲线图
            accPlot.push(logs.acc.toFixed(3));
            lossPlot.push(logs.loss.toFixed(3));
    
            await tf.nextFrame(); // 防止阻塞
          },
          onBatchEnd: async (batch, logs) => {
            console.log(
              `Batch ${batch} completed. Loss: ${logs.loss.toFixed(
                3
              )}, Accuracy: ${logs.acc.toFixed(3)}`
            );
            await tf.nextFrame(); // 防止阻塞
          },
        },
      })
      .then((history) => {
        console.log("Training completed!", history);
        //绘制模型训练过程中的损失函数和模型精度曲线变化
        const epochs = Array.from({ length: lossPlot.length }, (_, i) => i + 1);
        plot.plot(
          [
            { x: epochs, y: lossPlot, name: "Loss" },
            { x: epochs, y: accPlot, name: "Accuracy" },
          ],
          {
            filename: "loss_acc.png",
          }
        );
    
        //模型评估
        const testXsTensor = tf.tensor(testXs, [testDataLen, 784]);
        const testYsOneHot = tf.oneHot(testLabels, 10);
    
        const result = model.evaluate(testXsTensor, testYsOneHot);
        const testLoss = result[0].dataSync()[0];
        const testAccuracy = result[1].dataSync()[0];
    
        console.log(`Test loss: ${testLoss.toFixed(3)}`);
        console.log(`Test accuracy: ${testAccuracy.toFixed(3)}`);
        //保存模型
        model.save("file://./my-model").then(() => {
          console.log("Model saved!");
        });
      });
    
    
    • 1
    • 2
    • 3
    • 4
    • 5
    • 6
    • 7
    • 8
    • 9
    • 10
    • 11
    • 12
    • 13
    • 14
    • 15
    • 16
    • 17
    • 18
    • 19
    • 20
    • 21
    • 22
    • 23
    • 24
    • 25
    • 26
    • 27
    • 28
    • 29
    • 30
    • 31
    • 32
    • 33
    • 34
    • 35
    • 36
    • 37
    • 38
    • 39
    • 40
    • 41
    • 42
    • 43
    • 44
    • 45
    • 46
    • 47
    • 48
    • 49
    • 50
    • 51
    • 52
    • 53
    • 54
    • 55
    • 56
    • 57
    • 58
    • 59
    • 60
    • 61
    • 62
    • 63
    • 64
    • 65
    • 66
    • 67
    • 68
    • 69
    • 70
    • 71
    • 72
    • 73
    • 74
    • 75
    • 76
    • 77
    • 78
    • 79
    • 80
    • 81
    • 82
    • 83
    • 84
    • 85
    • 86
    • 87
    • 88
    • 89
    • 90
    • 91
    • 92
    • 93
    • 94
    • 95
    • 96
    • 97
    • 98
    • 99
    • 100
    • 101
    • 102
    • 103
    • 104
    • 105
    • 106
    • 107
    • 108
    • 109
    • 110
    • 111
    • 112
    • 113
    • 114
    • 115
    • 116
    • 117
    • 118
    • 119
    • 120

    package.json

    {
      "name": "neural_network",
      "version": "1.0.0",
      "description": "",
      "type": "module",
      "main": "mlpTest.js",
      "scripts": {
        "test": "echo \"Error: no test specified\" && exit 1",
      },
      "author": "",
      "license": "ISC",
      "dependencies": {
        "@tensorflow/tfjs": "^4.17.0",
        "@tensorflow/tfjs-node": "^4.17.0",
        "@tensorflow/tfjs-vis": "^1.0.0",
        "mnist": "^1.1.0",
        "nodeplotlib": "^0.7.7"
      },
      "devDependencies": {
        "@babel/core": "^7.0.0",
        "@babel/preset-env": "^7.0.0",
        "babel-loader": "^8.0.0",
        "webpack": "^5.0.0",
        "webpack-cli": "^4.0.0"
      }
    }
    
    • 1
    • 2
    • 3
    • 4
    • 5
    • 6
    • 7
    • 8
    • 9
    • 10
    • 11
    • 12
    • 13
    • 14
    • 15
    • 16
    • 17
    • 18
    • 19
    • 20
    • 21
    • 22
    • 23
    • 24
    • 25
    • 26

    模型结果

    模型精度

    损失函数与模型精度变化

    在这里插入图片描述

  • 相关阅读:
    Centos部署openGauss6.0创新版本,丝滑的体验
    【CMU15-445 Part-12】Query Execution I
    在 JavaScript 中检查 2 个数组是否相等的简单方法
    园子周边第3季—设计初稿预览:2024夏天穿上博客园T恤 show your code
    LeetCode_54_螺旋矩阵
    网络安全形势分析
    UE4 Http协议实现Web登陆与注册
    Java-部分知识点梳理及汇总
    旅游旺季,酒店要如何做好报修管理工作?
    Activating More Pixels in Image Super-Resolution Transformer(HAT)超分
  • 原文地址:https://blog.csdn.net/ChenXvYuan_001/article/details/136243902