码农知识堂 - 1000bd
  •   Python
  •   PHP
  •   JS/TS
  •   JAVA
  •   C/C++
  •   C#
  •   GO
  •   Kotlin
  •   Swift
  • 关于EEG转文本工作的善意提醒


    Correction on (AAAI 2022) Open Vocabulary EEG-To-Text Decoding and Zero-shot sentiment classification

    First of all, we are not pointing at others, we do this correction due to no offense, but a kind reminder of being careful of the string generation process.
    We repsect Mr. Wang ver much, and appreciate his great contribution in this area.

    After scrutilizing the original code shared by Wang Zhenhailong, we discovered that the eval method have an unintentional but very serious mistake in generating predicted strings, which is using teacher forcing implicitly.

    The code which reaches my concern is:

    seq2seqLMoutput = model(input_embeddings_batch, input_masks_batch, input_mask_invert_batch, target_ids_batch)
    logits = seq2seqLMoutput.logits # bs*seq_len*voc_sz
    probs = logits[0].softmax(dim = 1)
    values, predictions = probs.topk(1)
    predictions = torch.squeeze(predictions)
    predicted_string = tokenizer.decode(predictions) 
    
    • 1
    • 2
    • 3
    • 4
    • 5
    • 6

    Therefore resulting in predictions like below:

    In addition, we noticed that some people are using it as code base which generates concerning results. We are not condemning these researchers, we just want to notice them and maybe we can do something together to resolve this problem.

    BELT Bootstrapping Electroencephalography-to-Language Decoding and Zero-Shot SenTiment Classification by Natural Language Supervision
    Aligning Semantic in Brain and Language: A Curriculum Contrastive Method for Electroencephalography-to-Text Generation
    UniCoRN: Unified Cognitive Signal ReconstructioN bridging cognitive signals and human language
    Semantic-aware Contrastive Learning for Electroencephalography-to-Text Generation with Curriculum Learning
    DeWave: Discrete EEG Waves Encoding for Brain Dynamics to Text Translation

    We have written a corrected version to use model.generate to evaluate the model, the result is not so good.
    Basicly, we changed the model_decoding.py and eval_decoding.py to add model.generate for its originally nn.Module class model, and used model.generate to predict strings.

    We are open to everyone to scrutinize on this corrected code and run the code. Then, we will show the final performance of this model in this repo and formalize a technical paper.

    We really appreciate the great contribution made by Mr. Wang, however, we should prevent others from continuing this misunderstanding.

  • 相关阅读:
    Kafka多维度调优
    【C语言】简单实现扫雷游戏
    [JS入门到进阶] 手写解析uin8数组的工具:解析二进制字节,太快太方便了!
    springboot:整合mybatis-plus
    实验探究-ExecutorServiceAPI----未完待续!!!!
    AC自动机
    解构华为云HE2E项目中的容器技术应用
    #MySQL在C++中的基本`api`讲解
    springboot网络招聘服务系统毕业设计源码121727
    RocketMQ--Dledger集群搭建
  • 原文地址:https://blog.csdn.net/weixin_42896263/article/details/134559239
  • 最新文章
  • 攻防演习之三天拿下官网站群
    数据安全治理学习——前期安全规划和安全管理体系建设
    企业安全 | 企业内一次钓鱼演练准备过程
    内网渗透测试 | Kerberos协议及其部分攻击手法
    0day的产生 | 不懂代码的"代码审计"
    安装scrcpy-client模块av模块异常,环境问题解决方案
    leetcode hot100【LeetCode 279. 完全平方数】java实现
    OpenWrt下安装Mosquitto
    AnatoMask论文汇总
    【AI日记】24.11.01 LangChain、openai api和github copilot
  • 热门文章
  • 十款代码表白小特效 一个比一个浪漫 赶紧收藏起来吧!!!
    奉劝各位学弟学妹们,该打造你的技术影响力了!
    五年了,我在 CSDN 的两个一百万。
    Java俄罗斯方块,老程序员花了一个周末,连接中学年代!
    面试官都震惊,你这网络基础可以啊!
    你真的会用百度吗?我不信 — 那些不为人知的搜索引擎语法
    心情不好的时候,用 Python 画棵樱花树送给自己吧
    通宵一晚做出来的一款类似CS的第一人称射击游戏Demo!原来做游戏也不是很难,连憨憨学妹都学会了!
    13 万字 C 语言从入门到精通保姆级教程2021 年版
    10行代码集2000张美女图,Python爬虫120例,再上征途
Copyright © 2022 侵权请联系2656653265@qq.com    京ICP备2022015340号-1
正则表达式工具 cron表达式工具 密码生成工具

京公网安备 11010502049817号