• 时间复杂度和运算


    时间复杂度

            在算法和数据结构中,有许多时间复杂度比 O(1) 更差的情况。以下是一些常见的时间复杂度,按照从最优到最差的顺序排列:

    1. O(1): 常数时间复杂度,操作的运行时间与输入规模无关,是最理想的情况。

    2. O(log n): 对数时间复杂度,常见于分治算法和二分搜索等。

    3. O(n): 线性时间复杂度,操作的运行时间与输入规模成正比。

    4. O(n log n): 线性对数时间复杂度,常见于一些高效的排序算法,如快速排序和归并排序。

    5. O(n^2): 平方时间复杂度,常见于一些简单的嵌套循环算法-选择,冒泡,插入

    6. O(n^k): 多项式时间复杂度,其中 k 是常数,通常表示更高次幂的多项式时间复杂度。

    7. O(2^n): 指数时间复杂度,常见于一些指数级增长的问题,如穷举搜索。

    8. O(n!): 阶乘时间复杂度,通常表示在排列组合问题中的情况。时间复杂度表示形式

    对应的"选泡插"排序时间复杂度都是O(n^2)空间复杂度是O(1) 

    冒泡排序

    时间复杂度:有两个for循环,第一个for循环是每个元素都要与其他的元素比较一遍,所以如果有N个元素,那么最外层的for循环的时间复杂度就是O(N),然后每一次外层的for循环,都会在内部的for循环中两两进行比较,又是O(N),因为是for循环嵌套.所以最后的时间复杂度就是O(n^2),空间复杂度的话-一般来说,除了用户要求的内存空间之外,额外申请的新的空间,则就是空间复杂度,这里用了一个temp临时变量来存储数据,所以该空间复杂度是O(1)   

    1. public class 冒泡排序 {
    2. public static void main(String[] args) {
    3. int arr[] = {1, 2, 4, 5, 3, 6, 8, 7};
    4. //第一层for循环代表的是轮数,从第一个数开始,每个数都要和其他的数进行比较,所以有多少数,总共就有多少轮
    5. for (int i = 0; i < arr.length; i++) {
    6. //第二层for循环代表的是如果是逆序则换位置,因为有j+1 为了防止下标越界,所以在第二层for循环的时候,在减1
    7. for (int j=0;j1;j++){
    8. if (arr[j]>arr[j+1]){
    9. int tepm =arr[j];
    10. arr[j]=arr[j+1];
    11. arr[j+1]=tepm;
    12. }
    13. }
    14. }
    15. for (int i : arr) {
    16. System.out.print(i);
    17. }
    18. }
    19. }

     选择排序

    1. package 算法;
    2. public class 选择排序 {
    3. //先在[0~n-1]下标范围内找到最小值放到0位置上;
    4. //再在[1~n-1]下标范围内找到最小值放到1位置上;
    5. //依次如此操作,直到最后一个最小值【最大值】放在n-1位置上,完成排序操作;
    6. public static void main(String[] args) {
    7. int arr[] = {2, 1, 4, 5, 3, 6, 8, 7};
    8. for (int i = 0; i < arr.length-1; i++) {
    9. int minIndex=i;//最小值的下标设为第一个数的下标索引
    10. //然后第一个数和第二个数开始进行比较,看哪个数是最小的, 如果哪个是最小的,则记住最小值的下标,然后两个数进行交换,直到和其他的元素都比较完后,在走下一个数(也就是第一层for循环)
    11. for (int j=i+1;j
    12. minIndex=arr[j]
    13. }
    14. //交换位置
    15. int temp =arr[i];
    16. arr[i]=arr[minIndex];
    17. arr[minIndex]=temp;
    18. }
    19. for (int i : arr) {
    20. System.out.print(i);
    21. }
    22. }
    23. }

    插入排序

    1. public class 插入排序 {
    2. //思路就是:默认第一个数的位置已经确定.从第二个位置开始,如果比第一个位置的数小,则换位置,
    3. //第三个数再和第二个数比较,如果小于第二个数,则换位置,否则不换,然后继续和第一个位置上的数进行比较,小于则换位置.否则不换, 以此类推
    4. public static void main(String[] args) {
    5. int arr[] = {2, 1, 4, 5, 3, 6, 8, 7};
    6. for (int i = 1; i < arr.length; i++) {
    7. for(int j=i-1;j>=0&&arr[j]>arr[j+1];j--){
    8. int temp=arr[j];
    9. arr[j]=arr[j+1];
    10. arr[j+1]=temp;
    11. }
    12. }
    13. for (int i : arr) {
    14. System.out.print(i);
    15. }
    16. }
    17. }

    运算 

    异或 (^)

            不同为1,相同为0              有两个特性: a^0=a    a^a=0

        例题1:

          a=1 ,b=2 在不使用第三个临时变量来完成两个数的交换,这里就可以用到异或方法

    1. package 算法;
    2. /**
    3. * @author : gaoPengShuai
    4. * @date : 2023/11/21 21:21
    5. * @modyified By :
    6. */
    7. public class 异或 {
    8. public static void main(String[] args) {
    9. int a =1;
    10. int b=2;
    11. System.out.println("交换之前a的值是:"+a+" b的值是:"+b);
    12. //在不使用第三个变量来完成两个数的交换
    13. a=a^b;
    14. b=a^b;
    15. a=a^b;
    16. System.out.println("交换之后a的值是:"+a+" b的值是:"+b);
    17. }
    18. }
    19. 运行结果:
    20. 交换之前a的值是:1 b的值是:2
    21. 交换之后a的值是:2 b的值是:1
    22. Process finished with exit code 0

    例题2:

    在一个数组中,一个数出现了奇数次,其他的数出现了偶数次.找到该出现奇数次的数
    1. public static void test1(){
    2. //在一个数组中,一个数出现了奇数次,其他的数出现了偶数次.找到该出现奇数次的数
    3. int arr[] ={1,2,3,2,3,3,1};
    4. int temp =0;
    5. for (int i : arr) {
    6. temp^=i;
    7. }
    8. System.out.println(temp);
    9. }

    注意:这两个例题就用到了,a^a=0 然后0^b=b的方法,直接将两个数进行交换,但是值得注意的是,a和b值可以相同,但是内存地址不能相同,因为自己异或自己的结果是0,会将之前的值覆盖为0

    例题3:

    找到一个数转为二进制后,提取出最右侧的1
    1. public static void test3(){
    2. //找到一个数转为二进制后,提取出最右侧的1
    3. int a=5;
    4. int eor=a &(-a);//也可以写成 a&(~a+1)
    5. System.out.println("值是:"+eor);
    6. }
    7. 运行结果:
    8. 值是:1

    或 ( | )

     1 or 1=1,1 or 0=1,0 or 0=0,0 or 1=1。参加运算的两个对象只要有一个为1,其值为1

    与 (&)

     0&0=0; 0&1=0; 1&0=0; 1&1=1.         两位同时为“1”,结果才为“1”,否则为0

    取反( ~ )

    ~ 取反 ~是一元运算符,用来对一个二进制数按位取反,即将0变1,将1变0

    左移(<<)

    左移1位:相当于将该数的二进制后面补一个0 ,原理整体向左边走,就是之前的值乘2;

    右移(>>)

    右移1位:相当于将该数的二进制后面少一位 ,原理整体向右走,就是之前的值除以2;

  • 相关阅读:
    分享 5 个关于正则表达式的实际应用场景
    测试人员为什么也要学习Linux操作系统
    (五)正点原子STM32MP135移植——烧录
    springboot整合ES
    安卓毕业设计源码基于Uniapp+SSM实现的新闻APP
    python链接数据库并创建/删除/插入多个数据库/表/表数据
    Java版企业电子招标采购系统源码Spring Cloud + Spring Boot +二次开发+ MybatisPlus + Redis
    leetcode1:两数之和
    「Daily OI Round 4」Snow(贪心+模拟)
    Mybatis缓存
  • 原文地址:https://blog.csdn.net/gps666666/article/details/134523073