• OpenCV中常用的代码


    以下是一些OpenCV中常用的代码片段,涵盖了一些基本的图像处理和计算机视觉任务。

    1. 加载和显示图像:

      import cv2
      
      # 读取图像
      img = cv2.imread('image.jpg')
      
      # 显示图像
      cv2.imshow('Image', img)
      cv2.waitKey(0)
      cv2.destroyAllWindows()
      
      • 1
      • 2
      • 3
      • 4
      • 5
      • 6
      • 7
      • 8
      • 9
    2. 调整图像大小:

      resized_img = cv2.resize(img, (width, height))
      
      • 1
    3. 灰度转换:

      gray_img = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
      
      • 1
    4. 图像平滑:

      smoothed_img = cv2.GaussianBlur(img, (kernel_size, kernel_size), 0)
      
      • 1
    5. 边缘检测:

      edges = cv2.Canny(gray_img, threshold1, threshold2)
      
      • 1
    6. 图像阈值处理:

      ret, binary_img = cv2.threshold(gray_img, threshold_value, max_value, cv2.THRESH_BINARY)
      
      • 1
    7. 图像轮廓检测:

      contours, hierarchy = cv2.findContours(edges, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE)
      
      • 1
    8. 绘制轮廓:

      cv2.drawContours(img, contours, -1, (0, 255, 0), 2)
      
      • 1
    9. 人脸检测:

      face_cascade = cv2.CascadeClassifier('haarcascade_frontalface_default.xml')
      faces = face_cascade.detectMultiScale(gray_img, scaleFactor=1.3, minNeighbors=5)
      
      • 1
      • 2
    10. 图像旋转:

      rows, cols = img.shape[:2]
      M = cv2.getRotationMatrix2D((cols / 2, rows / 2), angle, scale)
      rotated_img = cv2.warpAffine(img, M, (cols, rows))
      
      • 1
      • 2
      • 3
    11. 图像腐蚀与膨胀:

      kernel = np.ones((kernel_size, kernel_size), np.uint8)
      eroded_img = cv2.erode(img, kernel, iterations=1)
      dilated_img = cv2.dilate(img, kernel, iterations=1)
      
      • 1
      • 2
      • 3
    12. 图像直方图均衡化:

      equ_img = cv2.equalizeHist(gray_img)
      
      • 1
    13. 图像混合:

      blended_img = cv2.addWeighted(img1, alpha, img2, beta, gamma)
      
      • 1
    14. 图像拼接:

      stitched_img = cv2.hconcat([img1, img2])
      
      • 1
    15. 图像截取:

      roi = img[y:y+h, x:x+w]
      
      • 1
    16. 图像相加:

      added_img = cv2.add(img1, img2)
      
      • 1
    17. 图像减法:

      subtracted_img = cv2.subtract(img1, img2)
      
      • 1
    18. 图像位运算:

      bitwise_and = cv2.bitwise_and(img1, img2)
      bitwise_or = cv2.bitwise_or(img1, img2)
      bitwise_xor = cv2.bitwise_xor(img1, img2)
      bitwise_not = cv2.bitwise_not(img)
      
      • 1
      • 2
      • 3
      • 4
    19. 图像平均模糊:

      averaged_img = cv2.blur(img, (kernel_size, kernel_size))
      
      • 1
    20. 中值滤波:

      median_blurred_img = cv2.medianBlur(img, ksize)
      
      • 1
    21. 自适应阈值:

      adaptive_thresh = cv2.adaptiveThreshold(
          gray_img, 255, cv2.ADAPTIVE_THRESH_GAUSSIAN_C, cv2.THRESH_BINARY, 11, 2)
      
      • 1
      • 2
    22. 图像旋转缩放:

      M = cv2.getRotationMatrix2D((cols / 2, rows / 2), angle, scale)
      rotated_resized_img = cv2.warpAffine(img, M, (new_cols, new_rows))
      
      • 1
      • 2
    23. SIFT 特征提取和匹配:

      sift = cv2.SIFT_create()
      keypoints1, descriptors1 = sift.detectAndCompute(img1, None)
      keypoints2, descriptors2 = sift.detectAndCompute(img2, None)
      
      • 1
      • 2
      • 3
    24. SURF 特征提取和匹配:

      surf = cv2.SURF_create()
      keypoints1, descriptors1 = surf.detectAndCompute(img1, None)
      keypoints2, descriptors2 = surf.detectAndCompute(img2, None)
      
      • 1
      • 2
      • 3
    25. ORB 特征提取和匹配:

      orb = cv2.ORB_create()
      keypoints1, descriptors1 = orb.detectAndCompute(img1, None)
      keypoints2, descriptors2 = orb.detectAndCompute(img2, None)
      
      • 1
      • 2
      • 3
    26. 使用 FLANN 匹配器进行特征匹配:

      FLANN_INDEX_KDTREE = 1
      index_params = dict(algorithm=FLANN_INDEX_KDTREE, trees=5)
      search_params = dict(checks=50)
      flann = cv2.FlannBasedMatcher(index_params, search_params)
      matches = flann.knnMatch(descriptors1, descriptors2, k=2)
      
      • 1
      • 2
      • 3
      • 4
      • 5
    27. 简单图像深度学习任务:

      net = cv2.dnn.readNet('model.weights', 'model.cfg')
      blob = cv2.dnn.blobFromImage(img, scalefactor=1.0, size=(300, 300), mean=(104.0, 177.0, 123.0))
      net.setInput(blob)
      detections = net.forward()
      
      • 1
      • 2
      • 3
      • 4
    28. HOG 特征提取与行人检测:

      hog = cv2.HOGDescriptor()
      hog.setSVMDetector(cv2.HOGDescriptor_getDefaultPeopleDetector())
      boxes, weights = hog.detectMultiScale(img, winStride=(8, 8), padding=(0, 0), scale=1.05)
      
      • 1
      • 2
      • 3

    这些是一些基本的OpenCV代码示例,覆盖了图像处理和计算机视觉中的常见任务。在实际应用中,可能需要根据具体场景和需求进一步调整参数和算法。

  • 相关阅读:
    Visual Studio 2022配置PCL1.12.1版本点云库
    API是什么?解密API背后的奥秘
    第一讲 递归和递推
    【机器学习7】优化算法
    一百七十四、Hive——Hive动态分区表加载数据时需不需要指定分区名?
    CS224W Colab_1 笔记
    Linux网络-MAC协议
    Tomcat使用与Servlet
    【回归预测-Lstm预测】基于长短期记忆网络LSTM实现电价时间序列单步预测附matlab代码
    plotly基础
  • 原文地址:https://blog.csdn.net/weixin_42367888/article/details/134528881