以下是一些OpenCV中常用的代码片段,涵盖了一些基本的图像处理和计算机视觉任务。
加载和显示图像:
import cv2
# 读取图像
img = cv2.imread('image.jpg')
# 显示图像
cv2.imshow('Image', img)
cv2.waitKey(0)
cv2.destroyAllWindows()
调整图像大小:
resized_img = cv2.resize(img, (width, height))
灰度转换:
gray_img = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
图像平滑:
smoothed_img = cv2.GaussianBlur(img, (kernel_size, kernel_size), 0)
边缘检测:
edges = cv2.Canny(gray_img, threshold1, threshold2)
图像阈值处理:
ret, binary_img = cv2.threshold(gray_img, threshold_value, max_value, cv2.THRESH_BINARY)
图像轮廓检测:
contours, hierarchy = cv2.findContours(edges, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE)
绘制轮廓:
cv2.drawContours(img, contours, -1, (0, 255, 0), 2)
人脸检测:
face_cascade = cv2.CascadeClassifier('haarcascade_frontalface_default.xml')
faces = face_cascade.detectMultiScale(gray_img, scaleFactor=1.3, minNeighbors=5)
图像旋转:
rows, cols = img.shape[:2]
M = cv2.getRotationMatrix2D((cols / 2, rows / 2), angle, scale)
rotated_img = cv2.warpAffine(img, M, (cols, rows))
图像腐蚀与膨胀:
kernel = np.ones((kernel_size, kernel_size), np.uint8)
eroded_img = cv2.erode(img, kernel, iterations=1)
dilated_img = cv2.dilate(img, kernel, iterations=1)
图像直方图均衡化:
equ_img = cv2.equalizeHist(gray_img)
图像混合:
blended_img = cv2.addWeighted(img1, alpha, img2, beta, gamma)
图像拼接:
stitched_img = cv2.hconcat([img1, img2])
图像截取:
roi = img[y:y+h, x:x+w]
图像相加:
added_img = cv2.add(img1, img2)
图像减法:
subtracted_img = cv2.subtract(img1, img2)
图像位运算:
bitwise_and = cv2.bitwise_and(img1, img2)
bitwise_or = cv2.bitwise_or(img1, img2)
bitwise_xor = cv2.bitwise_xor(img1, img2)
bitwise_not = cv2.bitwise_not(img)
图像平均模糊:
averaged_img = cv2.blur(img, (kernel_size, kernel_size))
中值滤波:
median_blurred_img = cv2.medianBlur(img, ksize)
自适应阈值:
adaptive_thresh = cv2.adaptiveThreshold(
gray_img, 255, cv2.ADAPTIVE_THRESH_GAUSSIAN_C, cv2.THRESH_BINARY, 11, 2)
图像旋转缩放:
M = cv2.getRotationMatrix2D((cols / 2, rows / 2), angle, scale)
rotated_resized_img = cv2.warpAffine(img, M, (new_cols, new_rows))
SIFT 特征提取和匹配:
sift = cv2.SIFT_create()
keypoints1, descriptors1 = sift.detectAndCompute(img1, None)
keypoints2, descriptors2 = sift.detectAndCompute(img2, None)
SURF 特征提取和匹配:
surf = cv2.SURF_create()
keypoints1, descriptors1 = surf.detectAndCompute(img1, None)
keypoints2, descriptors2 = surf.detectAndCompute(img2, None)
ORB 特征提取和匹配:
orb = cv2.ORB_create()
keypoints1, descriptors1 = orb.detectAndCompute(img1, None)
keypoints2, descriptors2 = orb.detectAndCompute(img2, None)
使用 FLANN 匹配器进行特征匹配:
FLANN_INDEX_KDTREE = 1
index_params = dict(algorithm=FLANN_INDEX_KDTREE, trees=5)
search_params = dict(checks=50)
flann = cv2.FlannBasedMatcher(index_params, search_params)
matches = flann.knnMatch(descriptors1, descriptors2, k=2)
简单图像深度学习任务:
net = cv2.dnn.readNet('model.weights', 'model.cfg')
blob = cv2.dnn.blobFromImage(img, scalefactor=1.0, size=(300, 300), mean=(104.0, 177.0, 123.0))
net.setInput(blob)
detections = net.forward()
HOG 特征提取与行人检测:
hog = cv2.HOGDescriptor()
hog.setSVMDetector(cv2.HOGDescriptor_getDefaultPeopleDetector())
boxes, weights = hog.detectMultiScale(img, winStride=(8, 8), padding=(0, 0), scale=1.05)
这些是一些基本的OpenCV代码示例,覆盖了图像处理和计算机视觉中的常见任务。在实际应用中,可能需要根据具体场景和需求进一步调整参数和算法。