目录
github地址:https://github.com/xuebinqin/DIS
This is the repo for our new project Highly Accurate Dichotomous Image Segmentation

对应的paper是ECCV2022的一篇文章《Highly Accurate Dichotomous Image Segmentation》, 跟BASNet和U2-Net都是出自同一个作者写的。

Inputs
-------------------------
name:input
tensor:Float[1, 3, 480, 640]
---------------------------------------------------------------
Outputs
-------------------------
name:output
tensor:Float[1, 1, 480, 640]
---------------------------------------------------------------
VS2022
.net framework 4.8
OpenCvSharp 4.8
Microsoft.ML.OnnxRuntime 1.16.2

using Microsoft.ML.OnnxRuntime.Tensors;
using Microsoft.ML.OnnxRuntime;
using OpenCvSharp;
using System;
using System.Collections.Generic;
using System.Windows.Forms;
using System.Linq;
using System.Drawing;
using static System.Net.Mime.MediaTypeNames;
namespace Onnx_Demo
{
public partial class frmMain : Form
{
public frmMain()
{
InitializeComponent();
}
string fileFilter = "*.*|*.bmp;*.jpg;*.jpeg;*.tiff;*.tiff;*.png";
string image_path = "";
DateTime dt1 = DateTime.Now;
DateTime dt2 = DateTime.Now;
int inpWidth;
int inpHeight;
int outHeight, outWidth;
Mat image;
string model_path = "";
SessionOptions options;
InferenceSession onnx_session;
Tensor
Tensor
List
IDisposableReadOnlyCollection
DisposableNamedOnnxValue[] results_onnxvalue;
private void button1_Click(object sender, EventArgs e)
{
OpenFileDialog ofd = new OpenFileDialog();
ofd.Filter = fileFilter;
if (ofd.ShowDialog() != DialogResult.OK) return;
pictureBox1.Image = null;
pictureBox2.Image = null;
textBox1.Text = "";
image_path = ofd.FileName;
pictureBox1.Image = new System.Drawing.Bitmap(image_path);
image = new Mat(image_path);
}
private void Form1_Load(object sender, EventArgs e)
{
// 创建输入容器
input_ontainer = new List
// 创建输出会话
options = new SessionOptions();
options.LogSeverityLevel = OrtLoggingLevel.ORT_LOGGING_LEVEL_INFO;
options.AppendExecutionProvider_CPU(0);// 设置为CPU上运行
// 创建推理模型类,读取本地模型文件
model_path = "model/isnet_general_use_480x640.onnx";
inpHeight = 480;
inpWidth = 640;
outHeight = 480;
outWidth = 640;
onnx_session = new InferenceSession(model_path, options);
// 创建输入容器
input_ontainer = new List
image_path = "test_img/bike.jpg";
pictureBox1.Image = new Bitmap(image_path);
}
private unsafe void button2_Click(object sender, EventArgs e)
{
if (image_path == "")
{
return;
}
textBox1.Text = "检测中,请稍等……";
pictureBox2.Image = null;
System.Windows.Forms.Application.DoEvents();
image = new Mat(image_path);
Mat resize_image = new Mat();
Cv2.Resize(image, resize_image, new OpenCvSharp.Size(inpWidth, inpHeight));
float[] input_tensor_data = new float[1 * 3 * inpWidth * inpHeight];
for (int c = 0; c < 3; c++)
{
for (int i = 0; i < inpHeight; i++)
{
for (int j = 0; j < inpWidth; j++)
{
float pix = ((byte*)(resize_image.Ptr(i).ToPointer()))[j * 3 + 2 - c];
input_tensor_data[c * inpHeight * inpWidth + i * inpWidth + j] = (float)(pix / 255.0 - 0.5);
}
}
}
input_tensor = new DenseTensor
//将 input_tensor 放入一个输入参数的容器,并指定名称
input_ontainer.Add(NamedOnnxValue.CreateFromTensor("input", input_tensor));
dt1 = DateTime.Now;
//运行 Inference 并获取结果
result_infer = onnx_session.Run(input_ontainer);
dt2 = DateTime.Now;
//将输出结果转为DisposableNamedOnnxValue数组
results_onnxvalue = result_infer.ToArray();
float[] pred = results_onnxvalue[0].AsTensor
Mat mask = new Mat(outHeight, outWidth, MatType.CV_32FC1, pred);
double min_value, max_value;
Cv2.MinMaxLoc(mask, out min_value, out max_value);
mask = (mask - min_value) / (max_value - min_value);
mask *= 255;
mask.ConvertTo(mask, MatType.CV_8UC1);
Cv2.Resize(mask, mask, new OpenCvSharp.Size(image.Cols, image.Rows));
Mat result_image = mask.Clone();
if (pictureBox2.Image != null)
{
pictureBox2.Image.Dispose();
}
pictureBox2.Image = new System.Drawing.Bitmap(result_image.ToMemoryStream());
textBox1.Text = "推理耗时:" + (dt2 - dt1).TotalMilliseconds + "ms";
mask.Dispose();
image.Dispose();
resize_image.Dispose();
result_image.Dispose();
}
private void pictureBox2_DoubleClick(object sender, EventArgs e)
{
Common.ShowNormalImg(pictureBox2.Image);
}
private void pictureBox1_DoubleClick(object sender, EventArgs e)
{
Common.ShowNormalImg(pictureBox1.Image);
}
}
}
- using Microsoft.ML.OnnxRuntime.Tensors;
- using Microsoft.ML.OnnxRuntime;
- using OpenCvSharp;
- using System;
- using System.Collections.Generic;
- using System.Windows.Forms;
- using System.Linq;
- using System.Drawing;
- using static System.Net.Mime.MediaTypeNames;
-
- namespace Onnx_Demo
- {
- public partial class frmMain : Form
- {
- public frmMain()
- {
- InitializeComponent();
- }
-
- string fileFilter = "*.*|*.bmp;*.jpg;*.jpeg;*.tiff;*.tiff;*.png";
- string image_path = "";
-
- DateTime dt1 = DateTime.Now;
- DateTime dt2 = DateTime.Now;
-
- int inpWidth;
- int inpHeight;
-
- int outHeight, outWidth;
-
- Mat image;
-
- string model_path = "";
-
- SessionOptions options;
- InferenceSession onnx_session;
- Tensor<float> input_tensor;
- Tensor<float> mask_tensor;
- List
input_ontainer; -
- IDisposableReadOnlyCollection
result_infer; - DisposableNamedOnnxValue[] results_onnxvalue;
-
- private void button1_Click(object sender, EventArgs e)
- {
- OpenFileDialog ofd = new OpenFileDialog();
- ofd.Filter = fileFilter;
- if (ofd.ShowDialog() != DialogResult.OK) return;
-
- pictureBox1.Image = null;
- pictureBox2.Image = null;
- textBox1.Text = "";
-
- image_path = ofd.FileName;
- pictureBox1.Image = new System.Drawing.Bitmap(image_path);
- image = new Mat(image_path);
- }
-
- private void Form1_Load(object sender, EventArgs e)
- {
- // 创建输入容器
- input_ontainer = new List
(); -
- // 创建输出会话
- options = new SessionOptions();
- options.LogSeverityLevel = OrtLoggingLevel.ORT_LOGGING_LEVEL_INFO;
- options.AppendExecutionProvider_CPU(0);// 设置为CPU上运行
-
- // 创建推理模型类,读取本地模型文件
- model_path = "model/isnet_general_use_480x640.onnx";
-
- inpHeight = 480;
- inpWidth = 640;
-
- outHeight = 480;
- outWidth = 640;
-
- onnx_session = new InferenceSession(model_path, options);
-
- // 创建输入容器
- input_ontainer = new List
(); -
- image_path = "test_img/bike.jpg";
- pictureBox1.Image = new Bitmap(image_path);
-
- }
-
- private unsafe void button2_Click(object sender, EventArgs e)
- {
- if (image_path == "")
- {
- return;
- }
- textBox1.Text = "检测中,请稍等……";
- pictureBox2.Image = null;
- System.Windows.Forms.Application.DoEvents();
-
- image = new Mat(image_path);
-
- Mat resize_image = new Mat();
- Cv2.Resize(image, resize_image, new OpenCvSharp.Size(inpWidth, inpHeight));
-
- float[] input_tensor_data = new float[1 * 3 * inpWidth * inpHeight];
-
- for (int c = 0; c < 3; c++)
- {
- for (int i = 0; i < inpHeight; i++)
- {
- for (int j = 0; j < inpWidth; j++)
- {
- float pix = ((byte*)(resize_image.Ptr(i).ToPointer()))[j * 3 + 2 - c];
- input_tensor_data[c * inpHeight * inpWidth + i * inpWidth + j] = (float)(pix / 255.0 - 0.5);
- }
- }
- }
-
- input_tensor = new DenseTensor<float>(input_tensor_data, new[] { 1, 3, inpHeight, inpWidth });
-
- //将 input_tensor 放入一个输入参数的容器,并指定名称
- input_ontainer.Add(NamedOnnxValue.CreateFromTensor("input", input_tensor));
-
- dt1 = DateTime.Now;
- //运行 Inference 并获取结果
- result_infer = onnx_session.Run(input_ontainer);
- dt2 = DateTime.Now;
-
- //将输出结果转为DisposableNamedOnnxValue数组
- results_onnxvalue = result_infer.ToArray();
-
- float[] pred = results_onnxvalue[0].AsTensor<float>().ToArray();
-
- Mat mask = new Mat(outHeight, outWidth, MatType.CV_32FC1, pred);
- double min_value, max_value;
- Cv2.MinMaxLoc(mask, out min_value, out max_value);
-
- mask = (mask - min_value) / (max_value - min_value);
-
- mask *= 255;
- mask.ConvertTo(mask, MatType.CV_8UC1);
-
- Cv2.Resize(mask, mask, new OpenCvSharp.Size(image.Cols, image.Rows));
-
- Mat result_image = mask.Clone();
-
- if (pictureBox2.Image != null)
- {
- pictureBox2.Image.Dispose();
- }
-
- pictureBox2.Image = new System.Drawing.Bitmap(result_image.ToMemoryStream());
- textBox1.Text = "推理耗时:" + (dt2 - dt1).TotalMilliseconds + "ms";
-
- mask.Dispose();
- image.Dispose();
- resize_image.Dispose();
- result_image.Dispose();
- }
-
- private void pictureBox2_DoubleClick(object sender, EventArgs e)
- {
- Common.ShowNormalImg(pictureBox2.Image);
- }
-
- private void pictureBox1_DoubleClick(object sender, EventArgs e)
- {
- Common.ShowNormalImg(pictureBox1.Image);
- }
- }
- }