• 矩阵的QR分解


    矩阵的QR分解

    GramSchmidt

    设存在 B = { x 1 , x 2 , … , x n } \mathcal{B}=\left\{\mathbf{x}_{1},\mathbf{x}_{2},\ldots,\mathbf{x}_{n}\right\} B={x1,x2,,xn}在施密特正交化过程中

    1. q 1 = x 1 ∣ ∣ x 1 ∣ ∣ q_1=\frac{x_1}{||x_1||} q1=∣∣x1∣∣x1
    2. q k = x k − ∑ i = 1 k − 1 < q i , x k > u i ∣ ∣ x k − ∑ i = 1 k − 1 < q i , x k > u i ∣ ∣ q_k=\frac{x_k-\sum_{i=1}^{k-1}\left< q_i,x_k\right>u_i}{||x_k-\sum_{i=1}^{k-1}\left< q_i,x_k\right>u_i||} qk=∣∣xki=1k1qi,xkui∣∣xki=1k1qi,xkui

    对于任意一个矩阵 A m × n = { a 1 ∣ a 2 ∣ … ∣ a n } A_{m\times n}=\{a_1|a_2|\dots|a_n\} Am×n={a1a2an},其行向量线性无关,则存在 A = Q R A=QR A=QR,其 Q m × n = { q 1 ∣ q 2 ∣ … ∣ q n } Q_{m\times n}=\{q_1|q_2|\dots|q_n\} Qm×n={q1q2qn}矩阵是 R ( A ) R(A) R(A)的一组正交基, R m × m R_{m\times m} Rm×m是一个上三角矩阵,则
    R = ( ν 1 q 1 ∗ a 2 q 1 ∗ a 3 ⋯ q 1 ∗ a n 0 ν 2 q 2 ∗ a 3 ⋯ q 2 ∗ a n 0 0 ν 3 ⋯ q 3 ∗ a n ⋮ ⋮ ⋮ ⋱ ⋮ 0 0 0 ⋯ ν n ) \mathbf{R}=

    (ν1q1a2q1a3q1an0ν2q2a3q2an00ν3q3an000νn)" role="presentation" style="position: relative;">(ν1q1a2q1a3q1an0ν2q2a3q2an00ν3q3an000νn)
    R= ν1000q1a2ν200q1a3q2a3ν30q1anq2anq3anνn
    其中 v 1 = ∣ ∣ a 1 ∣ ∣ , v k = ∣ ∣ a k − ∑ i = 1 k − 1 < q i , a k > q i ∣ ∣ for k>1 v_1=||a_1||,v_k=||a_k-\sum_{i=1}^{k-1}q_i|| \quad\text{for k>1} v1=∣∣a1∣∣,vk=∣∣aki=1k1<qi,ak>qi∣∣for k>1

    image-20231115204616157

    Householder

    酉矩阵:一个复数矩阵 U n × n U_{n\times n} Un×n它的行或列构成一个 C n C^n Cn的正交基,其中 U ∗ U = I , ∣ ∣ U x ∣ ∣ 2 = ∣ ∣ x ∣ ∣ 2 U^*U=I,||Ux||_2=||x||_2 UU=I∣∣Ux2=∣∣x2

    对于非0向量 U ∈ C n × 1 U \in C^{n\times 1} UCn×1 ,则 U U U的正交投影是 P u = U U ∗ U ∗ U P_u=\frac{UU^*}{U^*U} Pu=UUUU,其垂直方向的投影是 P u ⊥ = I − U U ∗ U ∗ U P_{u\perp}=I-\frac{UU^*}{U^*U} Pu=IUUUU

    初等反射( householder 变换)

    其中对于 u ⊥ u^{\perp} u初等反射 R = I − 2 U U ∗ U ∗ U R=I-2\frac{UU^*}{U^*U} R=I2UUUU

    对于矩阵 A m × n = [ A ∗ 1 ∣ A ∗ 2 ∣ ⋯ ∣ A ∗ n ] \mathbf{A}_{m\times n}=[\mathbf{A}_{*1}|\mathbf{A}_{*2}|\cdots|\mathbf{A}_{*n}] Am×n=[A1A2An]

    构建基本反射 R = I − 2 U U ∗ U ∗ U R=I-2\frac{UU^*}{U^*U} R=I2UUUU,其中 u = A ∗ 1 ± μ ∣ ∣ A ∗ 1 ∣ ∣ e 1 , μ = { 1 if  x 1  is real , x 1 / ∣ x 1 ∣ if  x 1  is not real , u=A_{*1}\pm\mu||A_{*1}||e_1,\quad\left.\mu=\left\{

    1if x1 is real,x1/|x1|if x1 is not real," role="presentation" style="position: relative;">1if x1 is real,x1/|x1|if x1 is not real,
    \right.\right. u=A1±μ∣∣A1∣∣e1,μ={1x1/∣x1if x1 is real,if x1 is not real,

    根据householder变换可得 R 1 A ∗ 1 = ∓ μ ∥ A ∗ 1 ∥ e 1 = ( t 11 , 0 , ⋯   , 0 ) T \mathbf{R}_1\mathbf{A}_{*1}=\mp\mu\|\mathbf{A}_{*1}\|\mathbf{e}_1=(t_{11},0,\cdots,0)^T R1A1=μA1e1=(t11,0,,0)T

    所以 R 1 A = [ R 1 A ∗ 1 ∣ R 1 A ∗ 2 ∣ ⋯ ∣ R 1 A ∗ n ] = ( t 11 t 1 T 0 A 2 ) \left.\mathbf{R}_1\mathbf{A}=[\mathbf{R}_1\mathbf{A}_{*1}|\mathbf{R}_1\mathbf{A}_{*2}|\cdots|\mathbf{R}_1\mathbf{A}_{*n}]=\left(

    t11t1T0A2" role="presentation" style="position: relative;">t11t1T0A2
    \right.\right) R1A=[R1A1R1A2R1An]=(t110t1TA2),其中 A 2 A_2 A2 是一个 ( m − 1 × n − 1 ) (m-1\times n-1) (m1×n1)的矩阵

    若同时对 A 2 A_2 A2矩阵进行操作可以得到一个上三角矩阵 ( m = n ) (m=n) (m=n),即 P A = T PA=T PA=T,其中 P P P矩阵为elementary reflector矩阵的乘积, T T T矩阵为上梯形

    image-20231116091638599

    image-20231116091656605

    Givens 旋转

    image-20231115234630004

    对于正交矩阵 P P P形式如上,表示在平面 ( i , j ) (i,j) (i,j)上旋转,其中 s 2 + c 2 = 1 s^2+c^2=1 s2+c2=1

    对于向量 X = { x 1 , x 2 … , x n } T X=\{x_1,x_2\dots,x_n\}^T X={x1,x2,xn}T P i j X = { x 1 , x 2 , … , c x i + s x j , … , − s x i + c x j , … , x n } T P_{ij}X=\{x_1,x_2,\dots,cx_i+sx_j,\dots,-sx_i+cx_j,\dots,x_n\}^T PijX={x1,x2,,cxi+sxj,,sxi+cxj,,xn}T,易知旋转矩阵乘某一个向量,其只有在该旋转平面上的值发生改变,若存在:
    c = x i x i 2 + x j 2 , s = x j x i 2 + x j 2 c=\frac{x_i}{\sqrt{x_i^2+x_j^2}},s=\frac{x_j}{\sqrt{x_i^2+x_j^2}} c=xi2+xj2 xi,s=xi2+xj2 xj
    P i j X = { x 1 , x 2 , … , x i 2 + x j 2 , … , 0 , … , x n } T P_{ij}X=\{x_1,x_2,\dots,\sqrt{x_i^2+x_j^2},\dots,0,\dots,x_n\}^T PijX={x1,x2,,xi2+xj2 ,,0,,xn}T

    由此可以实现消去向量的第j个值,即存在:
    P 12 x = ( x 1 2 + x 2 2 0 x 3 x 4 ⋮ x n ) ,   P 13 P 12 x = ( x 1 2 + x 2 2 + x 3 2 0 x 4 ⋮ x n ) ,   … ,   P 1 n ⋯ P 13 P 12 x = ( ∥ x ∥ 0 0 ⋮ 0 ) . \mathbf P_{12}\mathbf x=

    (x12+x220x3x4xn)" role="presentation" style="position: relative;">(x12+x220x3x4xn)
    ,~\mathbf P_{13}\mathbf P_{12}\mathbf x=
    (x12+x22+x320x4xn)" role="presentation" style="position: relative;">(x12+x22+x320x4xn)
    ,~\ldots,~\mathbf P_{1n}\cdots\mathbf P_{13}\mathbf P_{12}\mathbf x=
    (x000)" role="presentation" style="position: relative;">(x000)
    . P12x= x12+x22 0x3x4xn , P13P12x= x12+x22+x32 0x4xn , , P1nP13P12x= x000 .

    A A A矩阵是非奇异矩阵,则可以利用householder、givens以及Gram-schmidt来产生一个正交矩阵 Q Q Q以及一个上三角矩阵 R R R其对角线上全为正数,可以得到形如 A = Q R A=QR A=QR的形式

  • 相关阅读:
    2023年【熔化焊接与热切割】考试资料及熔化焊接与热切割复审模拟考试
    java需要用到的工具类/方法(持续更新)
    python轻量规则引擎rule-engine入门与应用实践
    深入探索JVM高效并发 — Java与线程之状态转换
    Vue Router源码分析
    软考中级软件设计师--1.计算机系统知识
    Go/Golang语言学习实践[回顾]教程04--安装一个Go语言的集成开发环境
    switch中的PVID、VID、untag、tag概念
    分布式事务最终一致性的方案
    mpvue进阶
  • 原文地址:https://blog.csdn.net/qq_43309286/article/details/134490899