采用WordPiece编码,又为了解决前后句子问题,BERT采用了两种方法去解决:
在组合的一序列tokens中把**分割token([SEP])**插入到每个句子后,以分开不同的句子tokens。
为每一个token表征都添加一个Segment Embedding来指示其属于句子A还是句子B。
在每个序列队首位置添加一个**[CLS]标记,该分类token对应的最后一个Transformer层输出被用来起到聚集整个序列表征信息的作用(在之后的下游**任务中,对于句子级别的任务,就把C输入到额外的输出层中,对于token级别的任务,就把其他token对应的最后一个Transformer的输出输入到额外的输出层)

Masked Language Model(MLM)改进了原始Transformer在预测时只能获取当前时刻前的信息,通过引入cloze(完形填空)的训练思路,让模型获得双向语言特征(部分语言问题本身需要通过获取双向信息才能达到更好的效果)。
Next Sentence Prediction(NSP),普通MLM任务只是倾向于对每个token层次的特征进行表征,但不能对相关token的句子层次特征进行表示,为了使得模型能理解句子间的关系,采用了NSP任务来进行训练。
具体的做法是:对于每一个训练样例,我们在语料库中挑选出句子A和句子B来组成,50%的时候句子B就是句子A的下一句*(标注为IsNext),剩下50%的时候句子B是语料库中的随机句子(标注为NotNext)*。接下来把训练样例输入到BERT模型中,用**[CLS]对应的C信息**去进行二分类的预测。
Segment-Level Recurrence,对于每个被segment的序列,将前一个序列计算的隐状态序列进行缓存,并利用到当前状态下的前向计算中(可以缓存多个序列)
提出相对位置编码:将序列每个位置信息表示为由位置偏移量和时间步数组成的向量,然后映射到固定的维度空间输入到注意力机制中

Permutation Language Modeling(随机置换语言模型),通过对序列进行permutation,让序列在以AR1模型进行输入的同时具备AE2模型能对上下文信息的优点,但此时位置编码需要修改,从而引入了Two-Stream Self-Attention。
Two-Stream Self-Attention,引入query stream和content stream,其中query stream是用来对随机置换的序列位置进行编码,以此具有位置关系信息。
采用将图片分为多个patch,再将每个patch投影为固定向量作为输入,为了更好的进行下游任务进行图像分类等操作,采用和[BERT](#Input/Output Representations)相似的操作,在输入序列最前面加一个**[CLS]**标记。从而,通过patch embedding将一个视觉问题转换为了一个seq2seq问题。



下采样的层级设计,能够逐渐增大感受野,从而使得注意力机制也能够注意到全局的特征
滑窗操作包括不重叠的 local window,和重叠的 cross-window。不重叠的local windows将注意力计算限制在一个窗口(window size固定),而cross-windows则让不同窗口之间信息可以进行关联,达到更好的效果。
