难度:简单
编写一个函数,输入是一个无符号整数(以二进制串的形式),返回其二进制表达式中数字位数为 ‘1’ 的个数(也被称为汉明重量)。
提示:
-3。示例 1:
输入:n = 00000000000000000000000000001011
输出:3
解释:输入的二进制串 00000000000000000000000000001011 中,共有三位为 '1'。
示例 2:
输入:n = 00000000000000000000000010000000
输出:1
解释:输入的二进制串 00000000000000000000000010000000 中,共有一位为 '1'。
示例 3:
输入:n = 11111111111111111111111111111101
输出:31
解释:输入的二进制串 11111111111111111111111111111101 中,共有 31 位为 '1'。
提示:
32 的 二进制串 。进阶:
思路:
N & ((~N) + 1):取数字N二进制表示最右边为 1 的二进制表示。即 10100 取 100public class Solution {
// you need to treat n as an unsigned value
public int hammingWeight(int n) {
int count = 0;
while (n != 0) {
n ^= n & ((~n) + 1);
count++;
}
return count;
}
}
我们可以直接循环检查给定整数 n 的二进制位的每一位是否为 1。
具体代码中,当检查第 i 位时,我们可以让 n 与 2^i 进行与运算,当且仅当 n 的第 i 位为 1 时,运算结果不为 0 。
public class Solution {
public int hammingWeight(int n) {
int ret = 0;
for (int i = 0; i < 32; i++) {
if ((n & (1 << i)) != 0) {
ret++;
}
}
return ret;
}
}
复杂度分析
观察这个运算:n & (n - 1),其运算结果恰为把 n 的二进制位中的最低位的 1 变为 0 之后的结果。
这样我们可以利用这个位运算的性质加速我们的检查过程,在实际代码中,我们不断让当前的 n 与 n - 1做与运算,直到 n 变为 0 即可。因为每次运算会使得的最低位的 1 被翻转,因此运算次数就等于 n 的二进制位中 1 的个数。
public class Solution {
public int hammingWeight(int n) {
int ret = 0;
while (n != 0) {
n &= n - 1;
ret++;
}
return ret;
}
}
复杂度分析
作者:力扣官方题解
链接:https://leetcode.cn/problems/number-of-1-bits/solutions/672082/wei-1de-ge-shu-by-leetcode-solution-jnwf/
来源:力扣(LeetCode)
著作权归作者所有。商业转载请联系作者获得授权,非商业转载请注明出处。
Integer.BitCount
public static int bitCount(int i) {
// HD, Figure 5-2
i = i - ((i >>> 1) & 0x55555555);
i = (i & 0x33333333) + ((i >>> 2) & 0x33333333);
i = (i + (i >>> 4)) & 0x0f0f0f0f;
i = i + (i >>> 8);
i = i + (i >>> 16);
return i & 0x3f;
}
时间复杂度O(loglogn)
分析来源:https://www.cnblogs.com/maples7/archive/2015/05/02/4472208.html