• 【技术追踪】SAM(Segment Anything Model)代码解析与结构绘制之Mask Decoder


      论文:Segment Anything
      代码:https://github.com/facebookresearch/segment-anything

      系列篇:
      (1)【技术追踪】SAM(Segment Anything Model)代码解析与结构绘制之Image Encoder
      (2)【技术追踪】SAM(Segment Anything Model)代码解析与结构绘制之Prompt Encoder

      本篇示例依然采用系列篇中的狗狗图像运行代码,预测部分代码如下:

    input_point = np.array([[1300, 800]])   # 输入point的坐标
    input_label = np.array([1])   # label=1表示前景, label=0表示背景
    # 输入box的坐标,(700,400)为左上角坐标, (1900,1100)为右下角坐标
    input_box = np.array([[700, 400, 1900, 1100]])   
    # 调用预测函数
    masks, scores, logits = predictor.predict(
        point_coords=input_point,
        point_labels=input_label,
        box=input_box,
        multimask_output=True,
    )
    
    • 1
    • 2
    • 3
    • 4
    • 5
    • 6
    • 7
    • 8
    • 9
    • 10
    • 11

      


    1. Mask Decoder代码解析

    (1)输入参数

      在【segment_anything/predictor.py --> SamPredictor类 -->predict_torch函数】中调用了mask_decoder实现mask预测,如下所示:

    low_res_masks, iou_predictions = self.model.mask_decoder(
                image_embeddings=self.features,
                image_pe=self.model.prompt_encoder.get_dense_pe(),
                sparse_prompt_embeddings=sparse_embeddings,
                dense_prompt_embeddings=dense_embeddings,
                multimask_output=multimask_output,
            )
    
    • 1
    • 2
    • 3
    • 4
    • 5
    • 6
    • 7

      ①参数self.features为input_image经过image_encoder嵌入后的向量,本例中大小为 [ 1 , 256 , 64 , 64 ] {[1, 256, 64, 64]} [1,256,64,64]

      ②参数sparse_embeddings为prompt point和prompt box经过prompt_encoder得到的嵌入向量,本例中其大小为 [ 1 , 3 , 256 ] {[1, 3, 256]} [1,3,256]

      ③参数dense_embeddings在本例中为无prompt mask输入时采用 nn.Embedding 的预定义嵌入向量, 其大小为 [ 1 , 256 , 64 , 64 ] {[1, 256, 64, 64]} [1,256,64,64]

      ④参数multimask_output是bool型参数,默认为True,支持多mask输出;

      ⑤参数self.model.prompt_encoder.get_dense_pe()调用PositionEmbeddingRandom实现位置编码,其大小为 [ 1 , 256 , 64 , 64 ] {[1, 256, 64, 64]} [1,256,64,64]

      def get_dense_pe(self) -> torch.Tensor:
            return self.pe_layer(self.image_embedding_size).unsqueeze(0)
    
    • 1
    • 2

    (2)MaskDecoder类

    位置:【segment_anything/modeling/mask_decoder.py -->MaskDecoder类】
    作用: 初始化网络结构,并调用predict_masks函数实现mask和iou预测

      先看MaskDecoder的 _ _ i n i t _ _ {\_\_init\_\_} __init__ 初始化函数和 f o r w a r d {forward} forward 函数:

    class MaskDecoder(nn.Module):
        def __init__(
            self,
            *,
            transformer_dim: int,
            transformer: nn.Module,
            num_multimask_outputs: int = 3,
            activation: Type[nn.Module] = nn.GELU,
            iou_head_depth: int = 3,
            iou_head_hidden_dim: int = 256,
        ) -> None:
           
            super().__init__()
            self.transformer_dim = transformer_dim   # transformer的通道维度 = 256
            self.transformer = transformer  # 用于mask预测的transformer = TwoWayTransformer
    
            self.num_multimask_outputs = num_multimask_outputs  # 消除歧义时需要的mask数量 = 3
    
            self.iou_token = nn.Embedding(1, transformer_dim)  # (1, 256)
            self.num_mask_tokens = num_multimask_outputs + 1   # mask数目加1 = 4
            self.mask_tokens = nn.Embedding(self.num_mask_tokens, transformer_dim)  # (4, 256)
            # 以反卷积实现4倍上采样
            self.output_upscaling = nn.Sequential(
                nn.ConvTranspose2d(transformer_dim, transformer_dim // 4, kernel_size=2, stride=2),
                LayerNorm2d(transformer_dim // 4),
                activation(),
                nn.ConvTranspose2d(transformer_dim // 4, transformer_dim // 8, kernel_size=2, stride=2),
                activation(),
            )
            # 4个mask对应的mlp
            self.output_hypernetworks_mlps = nn.ModuleList(
                [
                    MLP(transformer_dim, transformer_dim, transformer_dim // 8, 3)
                    for i in range(self.num_mask_tokens)
                ]
            )
            # iou预测对应的mlp
            self.iou_prediction_head = MLP(
                transformer_dim, iou_head_hidden_dim, self.num_mask_tokens, iou_head_depth
            )
    
        def forward(
            self,
            image_embeddings: torch.Tensor,
            image_pe: torch.Tensor,
            sparse_prompt_embeddings: torch.Tensor,
            dense_prompt_embeddings: torch.Tensor,
            multimask_output: bool,
        ) -> Tuple[torch.Tensor, torch.Tensor]:
           
            masks, iou_pred = self.predict_masks(
                image_embeddings=image_embeddings,  # image encoder嵌入 [1, 256, 64, 64]
                image_pe=image_pe,  # 图像嵌入大小对应的位置编码 [1, 256, 64, 64]
                sparse_prompt_embeddings=sparse_prompt_embeddings,  # prompt point和box嵌入 [1, 3, 256]
                dense_prompt_embeddings=dense_prompt_embeddings,  # prompt mask嵌入[1, 256, 64, 64]
            )  # 输出mask.size()=[1,4,256,256], iou_pred.size()=[1,4]
    
            # Select the correct mask or masks for output
            if multimask_output:
                mask_slice = slice(1, None)   # 从索引1开始取后面全部
            else:
                mask_slice = slice(0, 1)   # 从索引0开始取到1结束
            masks = masks[:, mask_slice, :, :]  # [1, 3, 256, 256]
            iou_pred = iou_pred[:, mask_slice]  # [1, 3]
    
            return masks, iou_pred
    
    • 1
    • 2
    • 3
    • 4
    • 5
    • 6
    • 7
    • 8
    • 9
    • 10
    • 11
    • 12
    • 13
    • 14
    • 15
    • 16
    • 17
    • 18
    • 19
    • 20
    • 21
    • 22
    • 23
    • 24
    • 25
    • 26
    • 27
    • 28
    • 29
    • 30
    • 31
    • 32
    • 33
    • 34
    • 35
    • 36
    • 37
    • 38
    • 39
    • 40
    • 41
    • 42
    • 43
    • 44
    • 45
    • 46
    • 47
    • 48
    • 49
    • 50
    • 51
    • 52
    • 53
    • 54
    • 55
    • 56
    • 57
    • 58
    • 59
    • 60
    • 61
    • 62
    • 63
    • 64
    • 65
    • 66

      传送门:【python函数】内置函数slice()用法解析

       f o r w a r d {forward} forward 的过程中主要完成了 predict_masks 函数调用;而在 _ _ i n i t _ _ {\_\_init\_\_} __init__函数中定义了 t r a n s f o r m e r {transformer} transformer o u t p u t _ u p s c a l i n g {output\_upscaling} output_upscaling o u t p u t _ h y p e r n e t w o r k s _ m l p s {output\_hypernetworks\_mlps} output_hypernetworks_mlps i o u _ p r e d i c t i o n _ h e a d {iou\_prediction\_head} iou_prediction_head 这四个玩意儿,接下来咱来瞅瞅他们是啥样的。


      ① transformer: 在【segment_anything/build_sam.py】中可以看到为transformer定义为TwoWayTransformer,prompt_embed_dim参数为256。

            mask_decoder=MaskDecoder(
                num_multimask_outputs=3,
                transformer=TwoWayTransformer(
                    depth=2,
                    embedding_dim=prompt_embed_dim,  # 256
                    mlp_dim=2048,
                    num_heads=8,
                ),
                transformer_dim=prompt_embed_dim,
                iou_head_depth=3,
                iou_head_hidden_dim=256,
            ),
    
    • 1
    • 2
    • 3
    • 4
    • 5
    • 6
    • 7
    • 8
    • 9
    • 10
    • 11
    • 12

      TwoWayTransformer 结构如下:

    class TwoWayTransformer(nn.Module):
        def __init__(
            self,
            depth: int,
            embedding_dim: int,
            num_heads: int,
            mlp_dim: int,
            activation: Type[nn.Module] = nn.ReLU,
            attention_downsample_rate: int = 2,
        ) -> None:
            
            super().__init__()
            self.depth = depth   # =2
            self.embedding_dim = embedding_dim  # =256
            self.num_heads = num_heads  # =8
            self.mlp_dim = mlp_dim  # =2048
            self.layers = nn.ModuleList()
    
            # 2个TwoWayAttentionBlock模块
            for i in range(depth):
                self.layers.append(
                    TwoWayAttentionBlock(
                        embedding_dim=embedding_dim,  # 256
                        num_heads=num_heads,  # 8
                        mlp_dim=mlp_dim,  # 2048
                        activation=activation,  # nn.ReLU
                        attention_downsample_rate=attention_downsample_rate,  # 降采样率=2
                        skip_first_layer_pe=(i == 0),  # 第1个TwoWayAttentionBlock为True, 第2个TwoWayAttentionBlock为False
                    )
                )
            # 1个Attention模块
            self.final_attn_token_to_image = Attention(
                embedding_dim, num_heads, downsample_rate=attention_downsample_rate
            )
            self.norm_final_attn = nn.LayerNorm(embedding_dim)
    
        def forward(
            self,
            image_embedding: Tensor,  # 图像编码:[1,256,64,64]
            image_pe: Tensor,   # 图像位置编码:[1,256,64,64]
            point_embedding: Tensor,   # iou_token,mask_tokens和sparse_prompt_embeddings的拼接向量:[1,8,256]
        ) -> Tuple[Tensor, Tensor]:
           
            # BxCxHxW -> BxHWxC == B x N_image_tokens x C
            bs, c, h, w = image_embedding.shape  # [1, 256, 64, 64]
            image_embedding = image_embedding.flatten(2).permute(0, 2, 1)  # [1,4096,256]
            image_pe = image_pe.flatten(2).permute(0, 2, 1)   # [1,4096,256]
    
            # Prepare queries
            queries = point_embedding  # 查询Q:[1,8,256]
            keys = image_embedding     # 键值K:[1,4096,256]
    
            # Apply transformer blocks and final layernorm
            for layer in self.layers:
                queries, keys = layer(
                    queries=queries,
                    keys=keys,
                    query_pe=point_embedding,
                    key_pe=image_pe,
                )  # 经过两个TwoWayAttentionBlock后, queries:[1,8,256], keys:[1,4096,256]
    
            # Apply the final attention layer from the points to the image
            q = queries + point_embedding  # [1,8,256]
            k = keys + image_pe  # [1,4096,256]
    
            attn_out = self.final_attn_token_to_image(q=q, k=k, v=keys)  # [1,8,256]
            queries = queries + attn_out  # [1,8,256]
            queries = self.norm_final_attn(queries)  # [1,8,256]
    
            return queries, keys
    
    • 1
    • 2
    • 3
    • 4
    • 5
    • 6
    • 7
    • 8
    • 9
    • 10
    • 11
    • 12
    • 13
    • 14
    • 15
    • 16
    • 17
    • 18
    • 19
    • 20
    • 21
    • 22
    • 23
    • 24
    • 25
    • 26
    • 27
    • 28
    • 29
    • 30
    • 31
    • 32
    • 33
    • 34
    • 35
    • 36
    • 37
    • 38
    • 39
    • 40
    • 41
    • 42
    • 43
    • 44
    • 45
    • 46
    • 47
    • 48
    • 49
    • 50
    • 51
    • 52
    • 53
    • 54
    • 55
    • 56
    • 57
    • 58
    • 59
    • 60
    • 61
    • 62
    • 63
    • 64
    • 65
    • 66
    • 67
    • 68
    • 69
    • 70

      Attention 结构如下:
      以TwoWayAttentionBlock的第一个Attention模块为例,即:

    # embedding_dim = 256, num_heads=8
    self.self_attn = Attention(embedding_dim, num_heads) 
    
    • 1
    • 2

      Attention模块主要实现了Transformer中基本的attention机制,若参数downsample_rate不为1,则会先对维度进行下采样映射:

    class Attention(nn.Module):
    
        def __init__(
            self,
            embedding_dim: int,   # 256
            num_heads: int,   # 8
            downsample_rate: int = 1,   # 1
        ) -> None:
            super().__init__()
            self.embedding_dim = embedding_dim   # 256
            self.internal_dim = embedding_dim // downsample_rate   # 256
            self.num_heads = num_heads   # 8
            assert self.internal_dim % num_heads == 0, "num_heads must divide embedding_dim."
    
            self.q_proj = nn.Linear(embedding_dim, self.internal_dim)   # (256,256)
            self.k_proj = nn.Linear(embedding_dim, self.internal_dim)   # (256,256)
            self.v_proj = nn.Linear(embedding_dim, self.internal_dim)   # (256,256)
            self.out_proj = nn.Linear(self.internal_dim, embedding_dim)   # (256,256)
    
        def _separate_heads(self, x: Tensor, num_heads: int) -> Tensor:
            b, n, c = x.shape
            x = x.reshape(b, n, num_heads, c // num_heads)
            return x.transpose(1, 2)  # B x N_heads x N_tokens x C_per_head
    
        def _recombine_heads(self, x: Tensor) -> Tensor:
            b, n_heads, n_tokens, c_per_head = x.shape
            x = x.transpose(1, 2)
            return x.reshape(b, n_tokens, n_heads * c_per_head)  # B x N_tokens x C
    
        def forward(self, q: Tensor, k: Tensor, v: Tensor) -> Tensor:
            # Input projections
            # 输入q:[1,8,256];k:[1,8,256];v:[1,8,256]
            q = self.q_proj(q)  # [1,8,256]
            k = self.k_proj(k)  # [1,8,256]
            v = self.v_proj(v)  # [1,8,256]
    
            # Separate into heads
            q = self._separate_heads(q, self.num_heads)  # [1,8,8,32]
            k = self._separate_heads(k, self.num_heads)  # [1,8,8,32]
            v = self._separate_heads(v, self.num_heads)  # [1,8,8,32]
    
            _, _, _, c_per_head = q.shape   # 每个head的维度c_per_head=32
            # attention机制-----------------------------------------------------------------------
            # 每个head实现q乘k的转置: [1,8,8,32]@[1,8,32,8]->[1,8,8,8]
            attn = q @ k.permute(0, 1, 3, 2)  # B x N_heads x N_tokens x N_tokens
            attn = attn / math.sqrt(c_per_head)  # q @ k(^T) / 根号d
            attn = torch.softmax(attn, dim=-1)  # [1,8,8,8]
            # -----------------------------------------------------------------------------------
            # Get output
            out = attn @ v   # softmax( q @ k(^T) / 根号d ) @ v ---> [1,8,8,32]
            out = self._recombine_heads(out)  # [1,8,256]
            out = self.out_proj(out)  # [1,8,256]
     
            return out
    
    • 1
    • 2
    • 3
    • 4
    • 5
    • 6
    • 7
    • 8
    • 9
    • 10
    • 11
    • 12
    • 13
    • 14
    • 15
    • 16
    • 17
    • 18
    • 19
    • 20
    • 21
    • 22
    • 23
    • 24
    • 25
    • 26
    • 27
    • 28
    • 29
    • 30
    • 31
    • 32
    • 33
    • 34
    • 35
    • 36
    • 37
    • 38
    • 39
    • 40
    • 41
    • 42
    • 43
    • 44
    • 45
    • 46
    • 47
    • 48
    • 49
    • 50
    • 51
    • 52
    • 53
    • 54

      为避免代码看的太晕,把Attention可视化一下,没错,就是最基本的Multi-head Attention啦~
      
    在这里插入图片描述
      
      TwoWayAttentionBlock 结构如下:
      以TwoWayTransformer的第一个TwoWayAttentionBlock模块为例,即:

    TwoWayAttentionBlock(
                        embedding_dim=embedding_dim,  # 256
                        num_heads=num_heads,  # 8
                        mlp_dim=mlp_dim,  # 2048
                        activation=activation,  # nn.ReLU
                        attention_downsample_rate=attention_downsample_rate,  # 降采样率=2
                        skip_first_layer_pe=(i == 0),  # 第1个TwoWayAttentionBlock为True
                        )
    
    • 1
    • 2
    • 3
    • 4
    • 5
    • 6
    • 7
    • 8

      TwoWayAttentionBlock模块:

    class TwoWayAttentionBlock(nn.Module):
        def __init__(
            self,
            embedding_dim: int,
            num_heads: int,
            mlp_dim: int = 2048,
            activation: Type[nn.Module] = nn.ReLU,
            attention_downsample_rate: int = 2,
            skip_first_layer_pe: bool = False,
        ) -> None:
            
            super().__init__()
            self.self_attn = Attention(embedding_dim, num_heads)   # embedding_dim=256, num_heads=8
            self.norm1 = nn.LayerNorm(embedding_dim)  # 256
    
            self.cross_attn_token_to_image = Attention(
                embedding_dim, num_heads, downsample_rate=attention_downsample_rate
            )   # embedding_dim=256, num_heads=8, attention_downsample_rate=2
            self.norm2 = nn.LayerNorm(embedding_dim)  # 256
    
            # embedding_dim=256, mlp_dim=2048, activation=nn.ReLU
            self.mlp = MLPBlock(embedding_dim, mlp_dim, activation)
            self.norm3 = nn.LayerNorm(embedding_dim)  # 256
    
            self.norm4 = nn.LayerNorm(embedding_dim)  # 256
            self.cross_attn_image_to_token = Attention(
                embedding_dim, num_heads, downsample_rate=attention_downsample_rate
            )   # embedding_dim=256, num_heads=8, attention_downsample_rate=2
    
            self.skip_first_layer_pe = skip_first_layer_pe  # True
    
        def forward(
            self, queries: Tensor, keys: Tensor, query_pe: Tensor, key_pe: Tensor
        ) -> Tuple[Tensor, Tensor]:
            # 输入queries:[1,8,256], keys:[1,4096,256], query_pe:[1,8,256], key_pe:[1,4096,256]
            # Self attention block
            if self.skip_first_layer_pe:
                queries = self.self_attn(q=queries, k=queries, v=queries)  # [1,8,256]
            else:
                q = queries + query_pe
                attn_out = self.self_attn(q=q, k=q, v=queries)
                queries = queries + attn_out
            queries = self.norm1(queries)  # [1,8,256]
    
            # Cross attention block, tokens attending to image embedding
            q = queries + query_pe  # [1,8,256]
            k = keys + key_pe  # [1,4096,256]
            attn_out = self.cross_attn_token_to_image(q=q, k=k, v=keys)  # [1,8,256]
            queries = queries + attn_out  # [1,8,256]
            queries = self.norm2(queries)  # [1,8,256]
    
            # MLP block
            mlp_out = self.mlp(queries)   # [1,8,256]
            queries = queries + mlp_out   # [1,8,256]
            queries = self.norm3(queries)  # [1,8,256]
    
            # Cross attention block, image embedding attending to tokens
            q = queries + query_pe    # [1,8,256]
            k = keys + key_pe   # [1,4096,256]
            attn_out = self.cross_attn_image_to_token(q=k, k=q, v=queries)  # [1,4096,256]
            keys = keys + attn_out  # [1,4096,256]
            keys = self.norm4(keys)  # [1,4096,256]
    
            return queries, keys
    
    • 1
    • 2
    • 3
    • 4
    • 5
    • 6
    • 7
    • 8
    • 9
    • 10
    • 11
    • 12
    • 13
    • 14
    • 15
    • 16
    • 17
    • 18
    • 19
    • 20
    • 21
    • 22
    • 23
    • 24
    • 25
    • 26
    • 27
    • 28
    • 29
    • 30
    • 31
    • 32
    • 33
    • 34
    • 35
    • 36
    • 37
    • 38
    • 39
    • 40
    • 41
    • 42
    • 43
    • 44
    • 45
    • 46
    • 47
    • 48
    • 49
    • 50
    • 51
    • 52
    • 53
    • 54
    • 55
    • 56
    • 57
    • 58
    • 59
    • 60
    • 61
    • 62
    • 63
    • 64

      可以看到TwoWayTransformer的结构以及token维度变化并不复杂,但其交错的 Q {Q} Q K {K} K V {V} V 确实令人眼花缭乱:
    在这里插入图片描述

      TwoWayTransformer中的MLP:

    class MLPBlock(nn.Module):
        def __init__(
            self,
            embedding_dim: int,
            mlp_dim: int,
            act: Type[nn.Module] = nn.GELU,
        ) -> None:
            super().__init__()
            # embedding_dim=256, mlp_dim=2048
            self.lin1 = nn.Linear(embedding_dim, mlp_dim)  
            self.lin2 = nn.Linear(mlp_dim, embedding_dim)
            self.act = act()
    
        def forward(self, x: torch.Tensor) -> torch.Tensor:
            return self.lin2(self.act(self.lin1(x)))
    
    • 1
    • 2
    • 3
    • 4
    • 5
    • 6
    • 7
    • 8
    • 9
    • 10
    • 11
    • 12
    • 13
    • 14
    • 15

      MLP为简单的线性、激活、线性结构:
    在这里插入图片描述


      ② output_upscaling:

    Sequential(
      (0): ConvTranspose2d(256, 64, kernel_size=(2, 2), stride=(2, 2))
      (1): LayerNorm2d()
      (2): GELU(approximate='none')
      (3): ConvTranspose2d(64, 32, kernel_size=(2, 2), stride=(2, 2))
      (4): GELU(approximate='none')
    )
    
    • 1
    • 2
    • 3
    • 4
    • 5
    • 6
    • 7

      output_upscaling模块由两个反卷积、两个GELU激活和一个LayerNorm组成,实现了特征图的四倍上采样,在 predict_masks函数 中将 [ 1 , 256 , 64 , 64 ] {[1,256,64,64]} [1,256,64,64] 上采样至 [ 1 , 32 , 256 , 256 ] {[1,32,256,256]} [1,32,256,256]

    src = src.transpose(1, 2).view(b, c, h, w)   # reshape: [1,4096,256]-> [1,256,64,64]
    upscaled_embedding = self.output_upscaling(src) # [1,32,256,256]
    
    • 1
    • 2

      ③ output_hypernetworks_mlps:

    ModuleList(
      (0-3): 4 x MLP(
        (layers): ModuleList(
          (0-1): 2 x Linear(in_features=256, out_features=256, bias=True)
          (2): Linear(in_features=256, out_features=32, bias=True)
        )
      )
    )
    
    • 1
    • 2
    • 3
    • 4
    • 5
    • 6
    • 7
    • 8

      output_hypernetworks_mlps由4个MLP组成,在 predict_masks函数 中将 [ 1 , 256 ] {[1,256]} [1,256] 下采样至 [ 1 , 32 ] {[1,32]} [1,32] 。与TwoWayAttentionBlock中的MLP不同,其结构稍稍多一丢丢:

    class MLP(nn.Module):
        def __init__(
                self,
                input_dim: int,   # 256
                hidden_dim: int,  # 256
                output_dim: int,  # 32
                num_layers: int,  # 3
                sigmoid_output: bool = False,  # False
        ) -> None:
            super().__init__()
            self.num_layers = num_layers  # 3
            h = [hidden_dim] * (num_layers - 1)  # [256,256]
            self.layers = nn.ModuleList(
                # [input_dim] + h: [256,256,256], h + [output_dim]:[256,256,32]
                nn.Linear(n, k) for n, k in zip([input_dim] + h, h + [output_dim])
            )
            self.sigmoid_output = sigmoid_output
    
        def forward(self, x):
            for i, layer in enumerate(self.layers):
            	# i<2经线性层后relu激活
                x = F.relu(layer(x)) if i < self.num_layers - 1 else layer(x)  
            if self.sigmoid_output:
                x = F.sigmoid(x)
            return x
    
    • 1
    • 2
    • 3
    • 4
    • 5
    • 6
    • 7
    • 8
    • 9
    • 10
    • 11
    • 12
    • 13
    • 14
    • 15
    • 16
    • 17
    • 18
    • 19
    • 20
    • 21
    • 22
    • 23
    • 24
    • 25

    在这里插入图片描述


      ④ iou_prediction_head:

    MLP(
      (layers): ModuleList(
        (0-1): 2 x Linear(in_features=256, out_features=256, bias=True)
        (2): Linear(in_features=256, out_features=4, bias=True)
      )
    )
    
    • 1
    • 2
    • 3
    • 4
    • 5
    • 6

      iou_prediction_head用以实现iou预测,由1个MLP完成,其结构与output_hypernetworks_mlps中的MLP一样,只是最终将 [ 1 , 256 ] {[1,256]} [1,256] 映射至 [ 1 , 4 ] {[1,4]} [1,4]分别代表非multimask预测时的1个mask和multimask预测时的3个mask的iou。


    (3)predict_masks函数

    位置:【segment_anything/modeling/mask_decoder.py --> MaskDecoder类 --> predict_masks函数】
    作用: 利用上述 t r a n s f o r m e r {transformer} transformer o u t p u t _ u p s c a l i n g {output\_upscaling} output_upscaling o u t p u t _ h y p e r n e t w o r k s _ m l p s {output\_hypernetworks\_mlps} output_hypernetworks_mlps i o u _ p r e d i c t i o n _ h e a d {iou\_prediction\_head} iou_prediction_head 四个模块,实现mask和iou预测
      
      此时此刻,首先来重温一下,传入predict_masks函数的参数分别是什么:

      ① image_embeddings:image encoder嵌入,大小为 [ 1 , 256 , 64 , 64 ] {[1, 256, 64, 64]} [1,256,64,64]
      ② image_pe:图像嵌入大小对应的位置编码,大小同为 [ 1 , 256 , 64 , 64 ] {[1, 256, 64, 64]} [1,256,64,64]
      ③ sparse_prompt_embeddings:prompt point和box嵌入,大小为 [ 1 , 3 , 256 ] {[1, 3, 256]} [1,3,256]
      ④ dense_prompt_embeddings:prompt mask嵌入,大小为 [ 1 , 256 , 64 , 64 ] {[1, 256, 64, 64]} [1,256,64,64]

    def predict_masks(
            self,
            image_embeddings: torch.Tensor,  # [1, 256, 64, 64]
            image_pe: torch.Tensor,  # [1, 256, 64, 64]
            sparse_prompt_embeddings: torch.Tensor,  # [1, 3, 256]
            dense_prompt_embeddings: torch.Tensor,  # [1, 256, 64, 64]
    ) -> Tuple[torch.Tensor, torch.Tensor]:
        """Predicts masks. See 'forward' for more details."""
        # Concatenate output tokens
        # 拼接iou的token和mask的token: [1,256]+[4,256]->[5,256]
        output_tokens = torch.cat([self.iou_token.weight, self.mask_tokens.weight], dim=0)
        output_tokens = output_tokens.unsqueeze(0).expand(sparse_prompt_embeddings.size(0), -1, -1)  # [1,5,256]
        # iou的token和mask的token + prompt point和box嵌入
        tokens = torch.cat((output_tokens, sparse_prompt_embeddings), dim=1)  # [1,8,256]
    
        # Expand per-image data in batch direction to be per-mask
        src = torch.repeat_interleave(image_embeddings, tokens.shape[0], dim=0)  # 按batch重复: [1,256,64,64]
        src = src + dense_prompt_embeddings  # [1,256,64,64]
        pos_src = torch.repeat_interleave(image_pe, tokens.shape[0], dim=0)  # 按batch重复: [1,256,64,64]
        b, c, h, w = src.shape  # 1,256,64,64
    
        # Run the transformer
        # src是image encoder嵌入和prompt mask嵌入
        # pos_src是图像嵌入大小对应的位置编码
        # tokens是iou的token和mask的token + prompt point和box嵌入
        hs, src = self.transformer(src, pos_src, tokens)  # hs:[1,8,256], src:[1,4096,256]
        iou_token_out = hs[:, 0, :]  # 第1个为iou的token输出[1,256]
        mask_tokens_out = hs[:, 1: (1 + self.num_mask_tokens), :]  # 随后4个为mask的token输出[4,256]
    
        # Upscale mask embeddings and predict masks using the mask tokens
        src = src.transpose(1, 2).view(b, c, h, w)   # reshape: [1,4096,256]-> [1,256,64,64]
        upscaled_embedding = self.output_upscaling(src)  # [1,32,256,256]
        hyper_in_list: List[torch.Tensor] = []
        for i in range(self.num_mask_tokens):
            hyper_in_list.append(self.output_hypernetworks_mlps[i](mask_tokens_out[:, i, :]))
        hyper_in = torch.stack(hyper_in_list, dim=1)  # [1,4,32]
        b, c, h, w = upscaled_embedding.shape  # 1,32,256,256
        
        masks = (hyper_in @ upscaled_embedding.view(b, c, h * w)).view(b, -1, h, w)  # [1,4,256,256]
    
        # Generate mask quality predictions
        iou_pred = self.iou_prediction_head(iou_token_out)  # [1,4]
    
        return masks, iou_pred
    
    • 1
    • 2
    • 3
    • 4
    • 5
    • 6
    • 7
    • 8
    • 9
    • 10
    • 11
    • 12
    • 13
    • 14
    • 15
    • 16
    • 17
    • 18
    • 19
    • 20
    • 21
    • 22
    • 23
    • 24
    • 25
    • 26
    • 27
    • 28
    • 29
    • 30
    • 31
    • 32
    • 33
    • 34
    • 35
    • 36
    • 37
    • 38
    • 39
    • 40
    • 41
    • 42
    • 43
    • 44

      由此可见,经TwoWayTransformer获得了iou_token_out和mask_tokens_out,iou_token_out由iou_prediction_head(1个MLP)实现iou预测,4个mask_tokens_out分别经过1个MLP所获得的映射拼接后,与经过output_upscaling上采样后的图像嵌入(包含image encoder嵌入和prompt mask嵌入)进行矩阵相乘,得到mask预测。


    2. Mask Decoder结构绘制

    (1)结构打印

    MaskDecoder(
      (transformer): TwoWayTransformer(
        (layers): ModuleList(
          (0-1): 2 x TwoWayAttentionBlock(
            (self_attn): Attention(
              (q_proj): Linear(in_features=256, out_features=256, bias=True)
              (k_proj): Linear(in_features=256, out_features=256, bias=True)
              (v_proj): Linear(in_features=256, out_features=256, bias=True)
              (out_proj): Linear(in_features=256, out_features=256, bias=True)
            )
            (norm1): LayerNorm((256,), eps=1e-05, elementwise_affine=True)
            (cross_attn_token_to_image): Attention(
              (q_proj): Linear(in_features=256, out_features=128, bias=True)
              (k_proj): Linear(in_features=256, out_features=128, bias=True)
              (v_proj): Linear(in_features=256, out_features=128, bias=True)
              (out_proj): Linear(in_features=128, out_features=256, bias=True)
            )
            (norm2): LayerNorm((256,), eps=1e-05, elementwise_affine=True)
            (mlp): MLPBlock(
              (lin1): Linear(in_features=256, out_features=2048, bias=True)
              (lin2): Linear(in_features=2048, out_features=256, bias=True)
              (act): ReLU()
            )
            (norm3): LayerNorm((256,), eps=1e-05, elementwise_affine=True)
            (norm4): LayerNorm((256,), eps=1e-05, elementwise_affine=True)
            (cross_attn_image_to_token): Attention(
              (q_proj): Linear(in_features=256, out_features=128, bias=True)
              (k_proj): Linear(in_features=256, out_features=128, bias=True)
              (v_proj): Linear(in_features=256, out_features=128, bias=True)
              (out_proj): Linear(in_features=128, out_features=256, bias=True)
            )
          )
        )
        (final_attn_token_to_image): Attention(
          (q_proj): Linear(in_features=256, out_features=128, bias=True)
          (k_proj): Linear(in_features=256, out_features=128, bias=True)
          (v_proj): Linear(in_features=256, out_features=128, bias=True)
          (out_proj): Linear(in_features=128, out_features=256, bias=True)
        )
        (norm_final_attn): LayerNorm((256,), eps=1e-05, elementwise_affine=True)
      )
      (iou_token): Embedding(1, 256)
      (mask_tokens): Embedding(4, 256)
      (output_upscaling): Sequential(
        (0): ConvTranspose2d(256, 64, kernel_size=(2, 2), stride=(2, 2))
        (1): LayerNorm2d()
        (2): GELU(approximate='none')
        (3): ConvTranspose2d(64, 32, kernel_size=(2, 2), stride=(2, 2))
        (4): GELU(approximate='none')
      )
      (output_hypernetworks_mlps): ModuleList(
        (0-3): 4 x MLP(
          (layers): ModuleList(
            (0-1): 2 x Linear(in_features=256, out_features=256, bias=True)
            (2): Linear(in_features=256, out_features=32, bias=True)
          )
        )
      )
      (iou_prediction_head): MLP(
        (layers): ModuleList(
          (0-1): 2 x Linear(in_features=256, out_features=256, bias=True)
          (2): Linear(in_features=256, out_features=4, bias=True)
        )
      )
    )
    
    • 1
    • 2
    • 3
    • 4
    • 5
    • 6
    • 7
    • 8
    • 9
    • 10
    • 11
    • 12
    • 13
    • 14
    • 15
    • 16
    • 17
    • 18
    • 19
    • 20
    • 21
    • 22
    • 23
    • 24
    • 25
    • 26
    • 27
    • 28
    • 29
    • 30
    • 31
    • 32
    • 33
    • 34
    • 35
    • 36
    • 37
    • 38
    • 39
    • 40
    • 41
    • 42
    • 43
    • 44
    • 45
    • 46
    • 47
    • 48
    • 49
    • 50
    • 51
    • 52
    • 53
    • 54
    • 55
    • 56
    • 57
    • 58
    • 59
    • 60
    • 61
    • 62
    • 63
    • 64
    • 65

    (2)结构绘制

      整体结构就是这样的啦,完结,撒花~
      
    在这里插入图片描述

  • 相关阅读:
    ps2023最新版免费滤镜插件Exposure安装下载教程
    大模型之十二十-中英双语开源大语言模型选型
    解决Visual studio 未能正确加载...包问题
    Redis主从模式(一)----搭建主从结构并演示
    Unity --- 触摸方法,以及灯光与烘培的使用
    SQL通配符
    万字长文解析最常见的数据库恢复算法: ARIES
    react native 0.70版本使用ant-design-mobile-rn及icons字体图标库
    2023-09-21 事业-代号z-个人品牌-对事务并发控制理论的精通-缺陷-分析
    设计模式--策略模式
  • 原文地址:https://blog.csdn.net/qq_43426908/article/details/133877154