通过下面一段代码了解C/C++内存划分。

全局变量与static修饰的全局变量的区别是: 一个全局变量被static修饰,使得这个全局变量只能在本源文件内使用,不能在其他源文件内使用。static修饰局部变量改变了变量的生命周期
让静态局部变量出了作用域依然存在,到程序结束,生命周期才结束。
const在* 前面修饰的是pChar3 指向的内容,为常量存在常量区,“abcd”为字面常量存放在常量区,char2所指向的内容以及 char2 并没有const修饰,所以存放在栈区。
【说明】
1. 栈又叫堆栈--局部变量(非静态)/函数参数/返回值等等,栈是向下增长的。
2. 内存映射段是高效的I/O映射方式,用于装载一个共享的动态内存库。用户可使用系统接口
创建共享共享内存,做进程间通信。
3. 堆用于程序运行时动态内存分配,堆是可以上增长的。
4. 数据段--存储全局数据和静态数据。
5. 代码段--可执行的代码/只读常量。
- void Test ()
- {
- int* p1 = (int*) malloc(sizeof(int));
- free(p1);
- // 1.malloc/calloc/realloc的区别是什么?
- int* p2 = (int*)calloc(4, sizeof (int));
- int* p3 = (int*)realloc(p2, sizeof(int)*10);
- // 这里需要free(p2)吗?
- free(p3 );
- }
C语言内存管理方式在C++中可以继续使用,但有些地方就无能为力,而且使用起来比较麻烦,因此C++又提出了自己的内存管理方式:通过new和delete操作符进行动态内存管理。


注意:申请和释放单个元素的空间,使用new和delete操作符,申请和释放连续的空间,使用new[]和delete[],注意:匹配起来使用。
new/delete 和 malloc/free最大区别是 new/delete对于【自定义类型】除了开空间还会调用构造函数和析构函数
- class A
- {
- public:
- A(int a = 0)
- : _a(a)
- {
- cout << "A():" << this << endl;
- }
- ~A()
- {
- cout << "~A():" << this << endl;
- }
- private:
- int _a;
- };
- int main()
- {
- A* p1 = (A*)malloc(sizeof(A));
- A* p2 = new A(1);
- free(p1);
- delete p2;
- // 内置类型是几乎是一样的
- int* p3 = (int*)malloc(sizeof(int)); // C
- int* p4 = new int;
- free(p3);
- delete p4;
- A* p5 = (A*)malloc(sizeof(A)*10);
- A* p6 = new A[10];
- free(p5);
- delete[] p6;
- return 0;
- }
在vs2013版本编译器下:new多个对象时,系统会自动在对象前面加上new对象的个数。

但从上图可以看出来,虽然多开辟了4个字节,但是p3却不指向多开辟存储new对象个数的位置。

当我们吧析构函数屏蔽掉后,编译器却没有开辟一块空间存储new对象的个数,所以有没有析构函数与开不开辟空间存储new对象的个数是直接相关的!!!
new/delete ,new[] / delete[] 要配合使用!!!否则程序就会出问题!!
new和delete是用户进行动态内存申请和释放的操作符,operator new 和operator delete是
系统提供的全局函数,new在底层调用operator new全局函数来申请空间,delete在底层通过
operator delete全局函数来释放空间。

- /*
- operator new:该函数实际通过malloc来申请空间,当malloc申请空间成功时直接返回;申请空间
- 失败,尝试执行空间不足应对措施,如果改应对措施用户设置了,则继续申请,否则抛异常。
- */
- void *__CRTDECL operator new(size_t size) _THROW1(_STD bad_alloc)
- {
- // try to allocate size bytes
- void *p;
- while ((p = malloc(size)) == 0)
- if (_callnewh(size) == 0)
- {
- // report no memory
- // 如果申请内存失败了,这里会抛出bad_alloc 类型异常
- static const std::bad_alloc nomem;
- _RAISE(nomem);
- }
- return (p);
- }
- /*
- operator delete: 该函数最终是通过free来释放空间的
- */
- void operator delete(void *pUserData)
- {
- _CrtMemBlockHeader * pHead;
- RTCCALLBACK(_RTC_Free_hook, (pUserData, 0));
- if (pUserData == NULL)
- return;
- _mlock(_HEAP_LOCK); /* block other threads */
- __TRY
- /* get a pointer to memory block header */
- pHead = pHdr(pUserData);
- /* verify block type */
- _ASSERTE(_BLOCK_TYPE_IS_VALID(pHead->nBlockUse));
- _free_dbg( pUserData, pHead->nBlockUse );
- __FINALLY
- _munlock(_HEAP_LOCK); /* release other threads */
- __END_TRY_FINALLY
- return;
- }
- /*
- free的实现
- */
- #define free(p) _free_dbg(p, _NORMAL_BLOCK)
通过上述两个全局函数的实现知道,operator new 实际也是通过malloc来申请空间,如果
malloc申请空间成功就直接返回,否则执行用户提供的空间不足应对措施,如果用户提供该措施
就继续申请,否则就抛异常。operator delete 最终是通过free来释放空间的。
如果申请的是内置类型的空间,new和malloc,delete和free基本类似,不同的地方是:
new/delete申请和释放的是单个元素的空间,new[]和delete[]申请的是连续空间,而且new在申请空间失败时会抛异常(正是因为抛异常所以当程序出现问题时我们才要捕获异常),malloc会返回NULL。
new的原理
1. 调用operator new函数申请空间
2. 在申请的空间上执行构造函数,完成对象的构造
delete的原理
1. 在空间上执行析构函数,完成对象中资源的清理工作
2. 调用operator delete函数释放对象的空间
new T[N]的原理
1. 调用operator new[]函数,在operator new[]中实际调用operator new函数完成N个对象空间的申请
2. 在申请的空间上执行N次构造函数
delete[]的原理
1. 在释放的对象空间上执行N次析构函数,完成N个对象中资源的清理
2. 调用operator delete[]释放空间,实际在operator delete[]中调用operator delete来释放空间
定位new表达式是在已分配的原始内存空间中调用构造函数初始化一个对象。
使用格式:
new (place_address) type或者new (place_address) type(initializer-list)
place_address必须是一个指针,initializer-list是类型的初始化列表
使用场景:
定位new表达式在实际中一般是配合内存池使用。因为内存池分配出的内存没有初始化,所以如果是自定义类型的对象,需要使用new的定义表达式进行显示调构造函数进行初始化。

malloc/free和new/delete的共同点是:都是从堆上申请空间,并且需要用户手动释放。不同的地方是:
1. malloc和free是函数,new和delete是操作符
2. malloc申请的空间不会初始化,new可以初始化
3. malloc申请空间时,需要手动计算空间大小并传递,new只需在其后跟上空间的类型即可,
如果是多个对象,[]中指定对象个数即可
4. malloc的返回值为void*, 在使用时必须强转,new不需要,因为new后跟的是空间的类型
5. malloc申请空间失败时,返回的是NULL,因此使用时必须判空,new不需要,但是new需
要捕获异常
6. 申请自定义类型对象时,malloc/free只会开辟空间,不会调用构造函数与析构函数,而new
在申请空间后会调用构造函数完成对象的初始化,delete在释放空间前会调用析构函数完成空间中资源的清理
注意:前五条为用法上的区别,最后一条为原理。