>- **🍨 本文为[🔗365天深度学习训练营](https://mp.weixin.qq.com/s/Nb93582M_5usednAKp_Jtw) 中的学习记录博客**
>- **🍖 原作者:[K同学啊 | 接辅导、项目定制](https://mtyjkh.blog.csdn.net/)**
>- **🚀 文章来源:[K同学的学习圈子](https://www.yuque.com/mingtian-fkmxf/zxwb45)**
如果设备上支持GPU就使用GPU,否则使用CPU
- import torch
- import torch.nn as nn
- import torchvision.transforms as transforms
- import torchvision
- from torchvision import transforms, datasets
-
- import os,PIL,pathlib,random
-
- device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
-
- print(device)
输出:
device(type='cpu')
- data_dir = './data/'
- data_dir = pathlib.Path(data_dir)
-
- data_paths = list(data_dir.glob('*'))
- classeNames = [str(path).split("\\")[1] for path in data_paths]
- print(classeNames)
输出:
['cloudy', 'rain', 'shine', 'sunrise']
pathlib.Path()函数将字符串类型的文件夹路径转换为pathlib.Path对象。glob()方法获取data_dir路径下的所有文件路径,并以列表形式存储在data_paths中。split()函数对data_paths中的每个文件路径执行分割操作,获得各个文件所属的类别名称,并存储在classeNames中classeNames列表,显示每个文件所属的类别名称。- import matplotlib.pyplot as plt
- from PIL import Image
-
- # 指定图像文件夹路径
- image_folder = './data/cloudy/'
-
- # 获取文件夹中的所有图像文件
- image_files = [f for f in os.listdir(image_folder) if f.endswith((".jpg", ".png", ".jpeg"))]
-
- # 创建Matplotlib图像
- fig, axes = plt.subplots(3, 8, figsize=(16, 6))
-
- # 使用列表推导式加载和显示图像
- for ax, img_file in zip(axes.flat, image_files):
- img_path = os.path.join(image_folder, img_file)
- img = Image.open(img_path)
- ax.imshow(img)
- ax.axis('off')
-
- # 显示图像
- plt.tight_layout()
- plt.show()

- total_datadir = './data/'
-
- # 关于transforms.Compose的更多介绍可以参考:https://blog.csdn.net/qq_38251616/article/details/124878863
- train_transforms = transforms.Compose([
- transforms.Resize([224, 224]), # 将输入图片resize成统一尺寸
- transforms.ToTensor(), # 将PIL Image或numpy.ndarray转换为tensor,并归一化到[0,1]之间
- transforms.Normalize( # 标准化处理-->转换为标准正太分布(高斯分布),使模型更容易收敛
- mean=[0.485, 0.456, 0.406],
- std=[0.229, 0.224, 0.225]) # 其中 mean=[0.485,0.456,0.406]与std=[0.229,0.224,0.225] 从数据集中随机抽样计算得到的。
- ])
-
- total_data = datasets.ImageFolder(total_datadir,transform=train_transforms)
- total_data
输出结果:
- Dataset ImageFolder
- Number of datapoints: 1125
- Root location: ./data/
- StandardTransform
- Transform: Compose(
- Resize(size=[224, 224], interpolation=bilinear, max_size=None, antialias=None)
- ToTensor()
- Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225])
- )
- train_size = int(0.8 * len(total_data))
- test_size = len(total_data) - train_size
- train_dataset, test_dataset = torch.utils.data.random_split(total_data, [train_size, test_size])
- train_dataset, test_dataset
代码输出:
- (
0x1cd91e01ee0>, -
0x1cd91e01f70>)
使用torch.utils.data.random_split()方法进行数据集划分。该方法将总体数据total_data按照指定的大小比例([train_size, test_size])随机划分为训练集和测试集,并将划分结果分别赋值给train_dataset和test_dataset两个变量。
- batch_size = 32
-
- train_dl = torch.utils.data.DataLoader(train_dataset,
- batch_size=batch_size,
- shuffle=True,
- num_workers=1)
- test_dl = torch.utils.data.DataLoader(test_dataset,
- batch_size=batch_size,
- shuffle=True,
- num_workers=1)
- for X, y in test_dl:
- print("Shape of X [N, C, H, W]: ", X.shape)
- print("Shape of y: ", y.shape, y.dtype)
- break
- Shape of X [N, C, H, W]: torch.Size([32, 3, 224, 224])
- Shape of y: torch.Size([32]) torch.int64
torch.utils.data.DataLoader()参数详解
torch.utils.data.DataLoader 是 PyTorch 中用于加载和管理数据的一个实用工具类。它允许你以小批次的方式迭代你的数据集,这对于训练神经网络和其他机器学习任务非常有用。DataLoader 构造函数接受多个参数,下面是一些常用的参数及其解释:
torch.utils.data.Dataset 的子类,它包含了你的数据样本。True,则在每个 epoch 开始时对数据进行洗牌,以随机打乱样本的顺序。这对于训练数据的随机性很重要,以避免模型学习到数据的顺序性。默认值为 False。True,则数据加载到 GPU 时会将数据存储在 CUDA 的锁页内存中,这可以加速数据传输到 GPU。默认值为 False。True,则在最后一个小批次可能包含样本数小于 batch_size 时,丢弃该小批次。这在某些情况下很有用,以确保所有小批次具有相同的大小。默认值为 False。对于一般的CNN网络来说,都是由特征提取网络和分类网络构成,其中特征提取网络用于提取图片的特征,分类网络用于将图片进行分类。
⭐1. torch.nn.Conv2d()详解
函数原型:
torch.nn.Conv2d(in_channels, out_channels, kernel_size, stride=1, padding=0, dilation=1, groups=1, bias=True, padding_mode='zeros', device=None, dtype=None)
关键参数说明:
⭐2. torch.nn.Linear()详解
函数原型:
torch.nn.Linear(in_features, out_features, bias=True, device=None, dtype=None)
关键参数说明:
⭐3. torch.nn.MaxPool2d()详解
函数原型:
torch.nn.MaxPool2d(kernel_size, stride=None, padding=0, dilation=1, return_indices=False, ceil_mode=False)
关键参数说明:
kernel_size大家注意一下在卷积层和全连接层之间,我们可以使用之前是torch.flatten()也可以使用我下面的x.view()亦或是torch.nn.Flatten()。torch.nn.Flatten()与TensorFlow中的Flatten()层类似,前两者则仅仅是一种数据集拉伸操作(将二维数据拉伸为一维),torch.flatten()方法不会改变x本身,而是返回一个新的张量。而x.view()方法则是直接在原有数据上进行操作。
网络结构图(可单击放大查看):

- import torch.nn.functional as F
-
- class Network_bn(nn.Module):
- def __init__(self):
- super(Network_bn, self).__init__()
- """
- nn.Conv2d()函数:
- 第一个参数(in_channels)是输入的channel数量
- 第二个参数(out_channels)是输出的channel数量
- 第三个参数(kernel_size)是卷积核大小
- 第四个参数(stride)是步长,默认为1
- 第五个参数(padding)是填充大小,默认为0
- """
- self.conv1 = nn.Conv2d(in_channels=3, out_channels=12, kernel_size=5, stride=1, padding=0)
- self.bn1 = nn.BatchNorm2d(12)
- self.conv2 = nn.Conv2d(in_channels=12, out_channels=12, kernel_size=5, stride=1, padding=0)
- self.bn2 = nn.BatchNorm2d(12)
- self.pool = nn.MaxPool2d(2,2)
- self.conv4 = nn.Conv2d(in_channels=12, out_channels=24, kernel_size=5, stride=1, padding=0)
- self.bn4 = nn.BatchNorm2d(24)
- self.conv5 = nn.Conv2d(in_channels=24, out_channels=24, kernel_size=5, stride=1, padding=0)
- self.bn5 = nn.BatchNorm2d(24)
- self.fc1 = nn.Linear(24*50*50, len(classeNames))
-
- def forward(self, x):
- x = F.relu(self.bn1(self.conv1(x)))
- x = F.relu(self.bn2(self.conv2(x)))
- x = self.pool(x)
- x = F.relu(self.bn4(self.conv4(x)))
- x = F.relu(self.bn5(self.conv5(x)))
- x = self.pool(x)
- x = x.view(-1, 24*50*50)
- x = self.fc1(x)
-
- return x
-
- device = "cuda" if torch.cuda.is_available() else "cpu"
- print("Using {} device".format(device))
-
- model = Network_bn().to(device)
- model
- Using cpu device
-
- Network_bn(
- (conv1): Conv2d(3, 12, kernel_size=(5, 5), stride=(1, 1))
- (bn1): BatchNorm2d(12, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
- (conv2): Conv2d(12, 12, kernel_size=(5, 5), stride=(1, 1))
- (bn2): BatchNorm2d(12, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
- (pool): MaxPool2d(kernel_size=2, stride=2, padding=0, dilation=1, ceil_mode=False)
- (conv4): Conv2d(12, 24, kernel_size=(5, 5), stride=(1, 1))
- (bn4): BatchNorm2d(24, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
- (conv5): Conv2d(24, 24, kernel_size=(5, 5), stride=(1, 1))
- (bn5): BatchNorm2d(24, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
- (fc1): Linear(in_features=60000, out_features=4, bias=True)
- )
- loss_fn = nn.CrossEntropyLoss() # 创建损失函数
- learn_rate = 1e-4 # 学习率
- opt = torch.optim.SGD(model.parameters(),lr=learn_rate)
1. optimizer.zero_grad()
函数会遍历模型的所有参数,通过内置方法截断反向传播的梯度流,再将每个参数的梯度值设为0,即上一次的梯度记录被清空。
2. loss.backward()
PyTorch的反向传播(即tensor.backward())是通过autograd包来实现的,autograd包会根据tensor进行过的数学运算来自动计算其对应的梯度。
具体来说,torch.tensor是autograd包的基础类,如果你设置tensor的requires_grads为True,就会开始跟踪这个tensor上面的所有运算,如果你做完运算后使用tensor.backward(),所有的梯度就会自动运算,tensor的梯度将会累加到它的.grad属性里面去。
更具体地说,损失函数loss是由模型的所有权重w经过一系列运算得到的,若某个w的requires_grads为True,则w的所有上层参数(后面层的权重w)的.grad_fn属性中就保存了对应的运算,然后在使用loss.backward()后,会一层层的反向传播计算每个w的梯度值,并保存到该w的.grad属性中。
如果没有进行tensor.backward()的话,梯度值将会是None,因此loss.backward()要写在optimizer.step()之前。
3. optimizer.step()
step()函数的作用是执行一次优化步骤,通过梯度下降法来更新参数的值。因为梯度下降是基于梯度的,所以在执行optimizer.step()函数前应先执行loss.backward()函数来计算梯度。
注意:optimizer只负责通过梯度下降进行优化,而不负责产生梯度,梯度是tensor.backward()方法产生的。
- # 训练循环
- def train(dataloader, model, loss_fn, optimizer):
- size = len(dataloader.dataset) # 训练集的大小,一共60000张图片
- num_batches = len(dataloader) # 批次数目,1875(60000/32)
-
- train_loss, train_acc = 0, 0 # 初始化训练损失和正确率
-
- for X, y in dataloader: # 获取图片及其标签
- X, y = X.to(device), y.to(device)
-
- # 计算预测误差
- pred = model(X) # 网络输出
- loss = loss_fn(pred, y) # 计算网络输出和真实值之间的差距,targets为真实值,计算二者差值即为损失
-
- # 反向传播
- optimizer.zero_grad() # grad属性归零
- loss.backward() # 反向传播
- optimizer.step() # 每一步自动更新
-
- # 记录acc与loss
- train_acc += (pred.argmax(1) == y).type(torch.float).sum().item()
- train_loss += loss.item()
-
- train_acc /= size
- train_loss /= num_batches
-
- return train_acc, train_loss
测试函数和训练函数大致相同,但是由于不进行梯度下降对网络权重进行更新,所以不需要传入优化器
- def test (dataloader, model, loss_fn):
- size = len(dataloader.dataset) # 测试集的大小,一共10000张图片
- num_batches = len(dataloader) # 批次数目,313(10000/32=312.5,向上取整)
- test_loss, test_acc = 0, 0
-
- # 当不进行训练时,停止梯度更新,节省计算内存消耗
- with torch.no_grad():
- for imgs, target in dataloader:
- imgs, target = imgs.to(device), target.to(device)
-
- # 计算loss
- target_pred = model(imgs)
- loss = loss_fn(target_pred, target)
-
- test_loss += loss.item()
- test_acc += (target_pred.argmax(1) == target).type(torch.float).sum().item()
-
- test_acc /= size
- test_loss /= num_batches
-
- return test_acc, test_loss
1. model.train()
model.train()的作用是启用 Batch Normalization 和 Dropout。
如果模型中有BN层(Batch Normalization)和Dropout,需要在训练时添加model.train()。model.train()是保证BN层能够用到每一批数据的均值和方差。对于Dropout,model.train()是随机取一部分网络连接来训练更新参数。
2. model.eval()
model.eval()的作用是不启用 Batch Normalization 和 Dropout。
如果模型中有BN层(Batch Normalization)和Dropout,在测试时添加model.eval()。model.eval()是保证BN层能够用全部训练数据的均值和方差,即测试过程中要保证BN层的均值和方差不变。对于Dropout,model.eval()是利用到了所有网络连接,即不进行随机舍弃神经元。
训练完train样本后,生成的模型model要用来测试样本。在model(test)之前,需要加上model.eval(),否则的话,有输入数据,即使不训练,它也会改变权值。这是model中含有BN层和Dropout所带来的的性质。
- epochs = 20
- train_loss = []
- train_acc = []
- test_loss = []
- test_acc = []
-
- for epoch in range(epochs):
- model.train()
- epoch_train_acc, epoch_train_loss = train(train_dl, model, loss_fn, opt)
-
- model.eval()
- epoch_test_acc, epoch_test_loss = test(test_dl, model, loss_fn)
-
- train_acc.append(epoch_train_acc)
- train_loss.append(epoch_train_loss)
- test_acc.append(epoch_test_acc)
- test_loss.append(epoch_test_loss)
-
- template = ('Epoch:{:2d}, Train_acc:{:.1f}%, Train_loss:{:.3f}, Test_acc:{:.1f}%,Test_loss:{:.3f}')
- print(template.format(epoch+1, epoch_train_acc*100, epoch_train_loss, epoch_test_acc*100, epoch_test_loss))
- print('Done')
- Epoch: 1, Train_acc:61.4%, Train_loss:0.986, Test_acc:72.0%,Test_loss:0.865
- Epoch: 2, Train_acc:76.7%, Train_loss:0.674, Test_acc:83.6%,Test_loss:0.558
- Epoch: 3, Train_acc:80.8%, Train_loss:0.561, Test_acc:88.4%,Test_loss:0.447
- Epoch: 4, Train_acc:83.6%, Train_loss:0.485, Test_acc:90.2%,Test_loss:0.431
- Epoch: 5, Train_acc:86.3%, Train_loss:0.423, Test_acc:89.8%,Test_loss:0.354
- Epoch: 6, Train_acc:86.3%, Train_loss:0.418, Test_acc:88.4%,Test_loss:0.306
- Epoch: 7, Train_acc:87.6%, Train_loss:0.389, Test_acc:88.4%,Test_loss:0.401
- Epoch: 8, Train_acc:90.0%, Train_loss:0.340, Test_acc:92.9%,Test_loss:0.488
- Epoch: 9, Train_acc:90.7%, Train_loss:0.321, Test_acc:92.4%,Test_loss:0.260
- Epoch:10, Train_acc:91.0%, Train_loss:0.316, Test_acc:92.9%,Test_loss:0.240
- Epoch:11, Train_acc:92.6%, Train_loss:0.288, Test_acc:93.3%,Test_loss:0.254
- Epoch:12, Train_acc:91.3%, Train_loss:0.291, Test_acc:92.4%,Test_loss:0.231
- Epoch:13, Train_acc:93.9%, Train_loss:0.238, Test_acc:92.4%,Test_loss:0.226
- Epoch:14, Train_acc:93.9%, Train_loss:0.255, Test_acc:93.3%,Test_loss:0.200
- Epoch:15, Train_acc:93.7%, Train_loss:0.239, Test_acc:94.7%,Test_loss:0.236
- Epoch:16, Train_acc:93.4%, Train_loss:0.224, Test_acc:93.3%,Test_loss:0.201
- Epoch:17, Train_acc:94.1%, Train_loss:0.265, Test_acc:94.7%,Test_loss:0.187
- Epoch:18, Train_acc:93.7%, Train_loss:0.222, Test_acc:94.2%,Test_loss:0.193
- Epoch:19, Train_acc:95.4%, Train_loss:0.224, Test_acc:93.8%,Test_loss:0.199
- Epoch:20, Train_acc:95.1%, Train_loss:0.201, Test_acc:93.3%,Test_loss:0.175
- Done
- import matplotlib.pyplot as plt
- #隐藏警告
- import warnings
- warnings.filterwarnings("ignore") #忽略警告信息
- plt.rcParams['font.sans-serif'] = ['SimHei'] # 用来正常显示中文标签
- plt.rcParams['axes.unicode_minus'] = False # 用来正常显示负号
- plt.rcParams['figure.dpi'] = 100 #分辨率
-
- epochs_range = range(epochs)
-
- plt.figure(figsize=(12, 3))
- plt.subplot(1, 2, 1)
-
- plt.plot(epochs_range, train_acc, label='Training Accuracy')
- plt.plot(epochs_range, test_acc, label='Test Accuracy')
- plt.legend(loc='lower right')
- plt.title('Training and Validation Accuracy')
-
- plt.subplot(1, 2, 2)
- plt.plot(epochs_range, train_loss, label='Training Loss')
- plt.plot(epochs_range, test_loss, label='Test Loss')
- plt.legend(loc='upper right')
- plt.title('Training and Validation Loss')
- plt.show()
