

**内存管理的主要功能: **
创建进程首先要将程序和数据装入内存。将用户源程序变为可在内存中执行的程序,通常需要以下几个步骤:
个完整的装入模块。

程序的链接有以下三种方式。
(1) 静态链接
在程序运行之前,先将各目标模块及它们所需的库函数链接成一个完整的装配模块,以后不 再拆开。
将几个目标模块装配成一个装入模块时,需要解决两个问题:
①修改相对地址,编译后 的所有目标模块都是从0开始的相对地址,当链接成一个装入模块时要修改相对地址。
②变换外 部调用符号,将每个模块中所用的外部调用符号也都变换为相对地址。
(2) 装入时动态链接
将用户源程序编译后所得到的一组目标模块,在装入内存时,采用边装入边链接的方式。其优点是便于修改和更新,便于实现对目标模块的共享。
(3) 运行时动态链接
对某些目标模块的链接,是在程序执行中需要该目标模块时才进行的。凡在执行过程中未被用到的目标模块,都不会被调入内存和被链接到装入模块上。其优点是能加快程序的装入过程,还可节省大量的内存空间。
内存的装入模块在装入内存时,同样有以下三种方式:
(1) 绝对装入
绝对装入方式只适用于单道程序环境。在编译时,若知道程序将驻留在内存的某个位置,则编译程序将产生绝对地址的目标代码。绝对装入程序按照装入模块中的地址,将程序和数据装入内存。由于程序中的逻辑地址与实际内存地址完全相同,因此不需对程序和数据的地址进行修改。
另外,程序中所用的绝对地址,可在编译或汇编时给出,也可由程序员直接赋予。而通常情况下在程序中采用的是符号地址,编译或汇编时再转换为绝对地址。
(2) 可重定位装入
在多道程序环境下,多个目标模块的起始地址通常都从0开始,程序中的其他地址都是相对于起始地址的,此时应采用可重定位装入方式。根据内存的当前情况,将装入模块装入内存的适当位置。在装入时对目标程序中指令和数据地址的修改过程称为重定位,又因为地址变换通常是在进程装入时一次完成的,故称为静态重定位
当一个作业装入内存时,必须给它分配要求的全部内存空间,若没有足够的内存,则无法装入。此外,作业一旦进入内存,整个运行期间就不能在内存中移动,也不能再申请内存空间。
(3) 动态运行时装入
也称动态重定位。程序在内存中若发生移动,则需要采用动态的装入方式。装入程序把装入模块装入内存后,并不立即把装入模块中的相对地址转换为绝对地址,而是把这种地址转换推迟到程序真正要执行时才进行。因此,装入内存后的所有地址均为相对地址。这种方式需要一个重定位寄存器的支持
动态重定位的优点:可以将程序分配到不连续的存储区;在程序运行之前可以只装入部分代码即可投入运行,然后在程序运行期间,根据需要动态申请分配内存;便于程序段的共享。
编译后,每个目标模块都从0号单元开始编址,这称为该目标模块的相对地址(或逻辑地址)。 当链接程序将各个模块链接成一个完整的可执行目标程序时,链接程序顺序依次按各个模块的相对地址构成统一的从0号单元开始编址的逻辑地址空间(或虚拟地址空间),对于32位系统,逻辑地址空间的范围为。0〜232- 1。进程在运行时,看到和使用的地址都是逻辑地址。用户程序和程序员只需知道逻辑地址,而内存管理的具体机制则是完全透明的。不同进程可以有相同的逻辑地址,因为这些相同的逻辑地址可以映射到主存的不同位置。
物理地址空间是指内存中物理单元的集合,它是地址转换的最终地址,进程在运行时执行指令和访问数据,最后都要通过物理地址从主存中存取。当装入程序将可执行代码装入内存时,必 须通过地址转换将逻辑地址转换成物理地址,这个过程称为地址重定位。
操作系统通过内存管理部件(MMU)将进程使用的逻辑地址转换为物理地址。进程使用虚拟内存空间中的地址,操作系统在相关硬件的协助下,将它"转换”成真正的物理地址。逻辑地址通过页表映射到物理内存,页表由操作系统维护并被处理器引用。

不同于存放在硬盘上的可执行程序文件,当一个程序调入内存运行时,就构成了进程的内存映像。一个进程的内存映像一般有几个要素:
代码段和数据段在程序调入内存时就指定了大小,而堆和栈不一样。当调用像malloc和free这样的C标准库函数时,堆可以在运行时动态地扩展和收缩。用户栈在程序运行期间也可以动态地扩展和收缩,每次调用一个函数,栈就会增长;从一个函数返回时,栈就会收缩。
下图是一个进程在内存中的映像。其中,共享库用来存放进程用到的共享函数库代码,如printf()函数等。在只读代码段中,.init是程序初始化时调用的—init函数;.text是用户程序的机器’代码;,rodata是只读数据。在读/写数据段中,.data是己初始化的全局变量和静态变量;.bss是未初始化及所有初始化为0的全局变量和静态变量。

操作系统作为系统资源的管理者,需要对内存进行一下管理:
确保每个进程都有一个单独的内存空间。内存分配前,需要保护操作系统不受用户进程的影响,同时保护用户进程不受其他用户进程的影响。内存保护可采取两种方法:


内存管理机构动态地将逻辑地址与界地址寄存器进行比较,若未发生地址越界,则加上重定位寄存器的值后映射成物理地址,再送交内存单元。
并不是所有的进程内存空间都适合共享,只有那些只读的区域才可以共享。可重入代码又称纯代码,是一种允许多个进程同时访问但不允许被任何进程修改的代码。但在实际执行时,也可以为每个进程配以局部数据区,把在执行中可能改变的部分复制到该数据区,这样,程序在执行
时只需对该私有数据区中的内存进行修改,并不去改变共享的代码。
下面通过一个例子来说明内存共享的实现方式。考虑一个可以同时容纳40个用户的多用户系统,他们同时执行一个文本编辑程序,若该程序有160KB代码区和40KB数据区,则共需8000KB的内存空间来支持40个用户。如果160KB代码是可分享的纯代码,则不论是在分页系统中还是
在分段系统中,整个系统只需保留一份副本即可,此时所需的内存空间仅为40KBx40 + 160KB =1760KBo对于分页系统,假设页面大小为4KB,则代码区占用40个页面、数据区占用10个页面。为实现代码共享,应在每个进程的页表中都建立40个页表项,它们都指向共享代码区的物
理页号。此外,每个进程还要为自己的数据区建立10个页表项,指向私有数据区的物理页号。对于分段系统,由于是以段为分配单位的,不管该段有多大,都只需为该段设置一个段表项(指向共享代码段始址,以及段长160KB)。由此可见,段的共享非常简单易行。
存储管理方式随着操作系统的发展而发展。在操作系统由单道向多道发展时,存储管理方式便由单一连续分配发展为固定分区分配。为了能更好地适应不同大小的程序要求,又从固定分区 分配发展到动态分区分配。为了更好地提高内存的利用率,进而从连续分配方式发展到离散分配方式一一页式存储管理。引入分段存储管理的目的,主要是为了满足用户在编程和使用方面的要
求,其中某些要求是其他几种存储管理方式难以满足的