• 二项分布和泊松分布


    一、二项分布
    1.1 n重伯努利试验
    若是二项分布,则必是n重伯努利试验概型。即:每次试验只有两种结果

    ,且在每次试验中A发生的概率相等,即P(A)=p,将这种试验独立重复n次,则称这种试验为n重伯努利试验,也叫n重伯努利概率模型,所以二项分布也叫伯努利分布。

    1.2 什么是二项
    二项是指:把一个随机试验的结果只划分成两种。例如:要么A事件发生,要么A事件没发生,记为:

    ;所以二项的涵义可理解为:随机变量X的取值只有两个,第一个取值的代表某事件发生了,第二个则代表某事件未发生。再例如:将考试成绩的结果分为两类,第一类是成绩≥60分,则第二类是成绩<60分。

    1.2 二项分布X~B
    用随机变量X来表示在n重伯努利试验中A事件发生的次数,其概率函数为:

    ,
    ,

    则称:X服从参数为(n,p)的二项分布,记作X~B。期望:E(X)=np;方差:D(X)=n·p(1-p)。

    1.4 二项分布的性质
    一般地,对于固定的n及p,当k增加时,概率P(X=k)先是随之增加直至到达最大值,随后单调减少:① 当(n+1)p为整数时,概率P(X=k)在k=
    =p(n+1)和(n+1)p-1时达到最大值;② 不为整数时,概率P(X=k)在k=
    在p(n+1)时达到最大值。称
    为二项分布的最可能值。说人话就是:当发生k次为几时,二项分布的概率值最大,最大即意味着最有可能发生。

    1.5 二项分布示例
    抛一枚硬币,设朝上的结果为随机变量X。问:假设一共抛5次,正面和反面发生的概率均为1/2,求3次正面朝上的概率:
    ,答:5次中发生3次正面朝上的概率为31.25%

    随机变量X(正面朝上次数)的期望:E(X)=np=(
    ),指:抛5次,正面朝上次数的平均结果是2.5次。

    随机变量X(正面朝上次数)的方差:D(X)=n·p(1-p)=(
    ,指:抛5次,正面朝上出现次数的方差为1.2。

    二、泊松分布
    2.1 与二项分布的区别
    泊松分布可以理解为:二项分布的试验次数趋向于无穷大时,事件A发生的次数及概率的分布。在理论上,泊松分布是二项分布的极限分布。当趋于无限次数时,可理解为一个时段或时空内,将每次试验是在分割成每秒/每分等事件单位下的事件A是否发生。如下图所示。

    重点:一般地,当n较大,p较小,np大小适当时,以(n,p)为参数的二项分布可近似看成参数为
    的泊松分布,这样可利用泊松分布对二项分布作近似计算,实际计算时,
    时近似的效果极好。

    2.2 泊松分布的涵义
    泊松分布是用来描述:在一个比较长的时间段(时空)里面,一个很小概率事件发生的次数。例如:一段时间内电话总台收到的来电呼叫次数;一段时间内,账户登录系统发生故障的次数;在一天内,来到商场的顾客人数;游泳池里一平方米内,从水底冒出来泡的次数等。

    2.3 泊松分布X~P
    用随机变量X来表示在在一段时间或时空内A事件发生的次数,其概率函数为:

    ,

    其中
    ,称X服从参数为
    的泊松分布(poisson distribution),记作X~P(
    )。

    其中期望E(X)和方差D(X)都为:

    2.4 泊松分布查表得概率
    例如:k=5次,
    =7,依下表查的P(X=5)=0.369≈37%;

    例如:k≤3次,
    =4,依下表查的P(X≤3)=0.0183+0.0916+0.2381+0.4335=0.7815≈78%。

  • 相关阅读:
    【python基础】第11回 数据类型内置方法 02
    MATLAB | 那些你不得不知道的MATLAB小技巧(三)
    怎么把Excel转换成PDF格式?这三种方法轻松完成转换
    二轴机器人大米装箱机的工作原理与应用
    为什么只会编程的程序员无法成为优秀的开发者?
    故障安全移动面板KTP900F Mobile下载程序提示无法下载,目标设备正在运行或未处于传输模式的解决办法
    CANdb++数据库操作
    springboot自动扫描添加的BeanDefinition源码解析
    操作系统【OS】操作系统结构
    【听课笔记】复旦大学遗传学_04连锁与交换
  • 原文地址:https://blog.csdn.net/cuisidong1997/article/details/134435184