y ( k + 2 ) + 5 y ( k + 1 ) + 6 y ( k ) = u ( k + 2 ) + 2 u ( k + 1 ) + u ( k ) y(k+2)+5y(k+1)+6y(k)=u(k+2)+2u(k+1)+u(k) y(k+2)+5y(k+1)+6y(k)=u(k+2)+2u(k+1)+u(k)
num_1=[1 2 1];
den_1=[1 5 6];
sys_1=tf(num_1,den_1,-1)
G
(
s
)
=
[
s
2
+
2
s
+
1
s
2
+
5
s
+
6
s
+
5
s
+
2
2
s
+
3
s
3
+
6
s
2
+
11
s
+
6
6
2
s
+
7
]
G(s)=\left[
num={[1 2 1] [1 5]; [2 3] [6]};
den={[1 5 6] [1 2]; [1 6 11 6] [2 7]};
sys_1=tf(num,den)
x
˙
=
[
0
1
−
2
−
3
]
x
+
[
0
1
]
u
y
=
[
1
0
]
x
A=[0 1; -2 -3];
B=[0; 1]; C=[1 0];
D=0;
sys=ss(A,B,C,D)
x
˙
=
[
0
1
−
2
−
3
]
x
+
[
0
1
]
u
y
=
[
1
0
]
x
sys_tf=tf(sys)
sys_1_ss=ss(sys_1)
sys_can_ss=canon(sys_1,'modal')
num_1=[2 14 24]; den_1=[1 5 8 4];
sys_1=tf(num_1,den_1);% 建立传递函数模型
sys_comp=dif2ss(sys_1,'companion')% 求传递函数的友矩阵形状态空间模型
sys_jord=dif2ss(num_1,den_1,'jordan')% 求传递函数的约旦规范形状态空间模型
{
x
˙
=
[
0
1
0
0
0
1
−
6
−
11
−
6
]
x
+
[
0
0
6
]
u
y
=
[
1
0
0
]
x
\left\{
和
P
=
[
1
1
1
−
1
−
2
−
3
1
4
9
]
P=\left[
A=[0 1 0; 0 0 1; -6 -11 -6];
B=[0; 0; 6]; C=[1 0 0]; D=0;
P=[1 1 1; -1 -2 -3; 1 4 9];
sys_in=ss(A,B,C,D);
sys_out=ss2ss(sys_in,inv(P))
d = eig(A)%只计算所有特征值
[V,D] = eig(A)%同时得到所有特征向量和特征值
J = jordan(A)%只计算A矩阵对应的约旦矩阵J
[V,J] = jordan(A)%所有广义特征向量和约旦矩阵J
x
˙
=
[
0
1
0
0
0
1
−
4
−
8
−
5
]
x
+
[
0
0
1
]
u
\dot{x}=\left[
y
=
[
1
0
0
]
x
y=\left[
A=[0 1 0; 0 0 1; -4 -8 -5];
B=[0; 0; 1]; C=[1 0 0]; D=0;
sys_in=ss(A,B,C,D);
[P,J]=jordan(A);
sys_out=ss2ss(sys_in,inv(P))