• 【matlab学习】现代控制


    (1) SISO Modeling

    y ( k + 2 ) + 5 y ( k + 1 ) + 6 y ( k ) = u ( k + 2 ) + 2 u ( k + 1 ) + u ( k ) y(k+2)+5y(k+1)+6y(k)=u(k+2)+2u(k+1)+u(k) y(k+2)+5y(k+1)+6y(k)=u(k+2)+2u(k+1)+u(k)

    num_1=[1 2 1];
    den_1=[1 5 6];
    sys_1=tf(num_1,den_1,-1)
    
    • 1
    • 2
    • 3

    (2) MIMO Modeling

    G ( s ) = [ s 2 + 2 s + 1 s 2 + 5 s + 6 s + 5 s + 2 2 s + 3 s 3 + 6 s 2 + 11 s + 6 6 2 s + 7 ] G(s)=\left[

    s2+2s+1s2+5s+6s+5s+22s+3s3+6s2+11s+662s+7" role="presentation" style="position: relative;">s2+2s+1s2+5s+6s+5s+22s+3s3+6s2+11s+662s+7
    \right] G(s)=[s2+5s+6s2+2s+1s3+6s2+11s+62s+3s+2s+52s+76]

    num={[1 2 1] [1 5]; [2 3] [6]};
    den={[1 5 6] [1 2]; [1 6 11 6] [2 7]};
    sys_1=tf(num,den) 
    
    • 1
    • 2
    • 3

    (3) 状态空间模型

    x ˙ = [ 0 1 − 2 − 3 ] x + [ 0 1 ] u y = [ 1 0 ] x

    \begin{array}{l}\dot{x}=\left[\begin{array}{cc}0&1\\-2&-3\end{array}" role="presentation" style="position: relative;">\begin{array}{l}\dot{x}=\left[\begin{array}{cc}0&1\\-2&-3\end{array}
    \right]x+\left[
    01" role="presentation" style="position: relative;">01
    \right]u \\ y=\left[
    10" role="presentation" style="position: relative;">10
    \right]x\end{array} x˙=[0213]x+[01]uy=[10]x

    A=[0 1; -2 -3];
    B=[0; 1];  C=[1 0];  
    D=0;
    sys=ss(A,B,C,D)
    
    • 1
    • 2
    • 3
    • 4

    (4) 状态空间模型->传递函数

    x ˙ = [ 0 1 − 2 − 3 ] x + [ 0 1 ] u y = [ 1 0 ] x

    \begin{array}{l}\dot{x}=\left[\begin{array}{cc}0&1\\-2&-3\end{array}" role="presentation" style="position: relative;">\begin{array}{l}\dot{x}=\left[\begin{array}{cc}0&1\\-2&-3\end{array}
    \right]x+\left[
    01" role="presentation" style="position: relative;">01
    \right]u \\ y=\left[
    10" role="presentation" style="position: relative;">10
    \right]x\end{array} x˙=[0213]x+[01]uy=[10]x

    sys_tf=tf(sys)
    
    • 1

    (5) 传递函数->状态空间模型

    • 转换函数ss()
    sys_1_ss=ss(sys_1)
    
    • 1
    • 规范形转换函数canon()
    sys_can_ss=canon(sys_1,'modal')
    
    • 1
    • 常微分方程(传递函数)转换为状态空间模型函数dif2ss()
      y ′ ′ ′ + 5 y ′ ′ + 8 y ′ + 4 y = 2 u ′ ′ + 14 u ′ + 24 u y^{'''}+5y^{''}+8y^{'}+4y=2u^{''}+14u^{'}+24u y′′′+5y′′+8y+4y=2u′′+14u+24u
    num_1=[2 14 24];  den_1=[1 5 8 4];
    sys_1=tf(num_1,den_1);% 建立传递函数模型
    sys_comp=dif2ss(sys_1,'companion')% 求传递函数的友矩阵形状态空间模型
    sys_jord=dif2ss(num_1,den_1,'jordan')% 求传递函数的约旦规范形状态空间模型
    
    • 1
    • 2
    • 3
    • 4

    (6) 状态空间模型变换

    { x ˙ = [ 0 1 0 0 0 1 − 6 − 11 − 6 ] x + [ 0 0 6 ] u y = [ 1 0 0 ] x \left\{

    \begin{array}{l}\dot{x}=\left[\begin{array}{ccc}0 & 1 & 0\\0 & 0 & 1\\ -6 & -11 & -6\end{array}" role="presentation" style="position: relative;">\begin{array}{l}\dot{x}=\left[\begin{array}{ccc}0 & 1 & 0\\0 & 0 & 1\\ -6 & -11 & -6\end{array}
    \right]x+\left[
    006" role="presentation" style="position: relative;">006
    \right]u \\ y=\left[
    100" role="presentation" style="position: relative;">100
    \right]x\end{array}\right. x˙= 0061011016 x+ 006 uy=[100]x

    P = [ 1 1 1 − 1 − 2 − 3 1 4 9 ] P=\left[
    111123149" role="presentation" style="position: relative;">111123149
    \right]
    P= 111124139

    A=[0 1 0; 0 0 1; -6 -11 -6];
    B=[0; 0; 6];  C=[1 0 0];  D=0;
    P=[1 1 1; -1 -2 -3; 1 4 9];
    sys_in=ss(A,B,C,D);
    sys_out=ss2ss(sys_in,inv(P)) 
    
    • 1
    • 2
    • 3
    • 4
    • 5

    (7) 特征值和特征向量

    d = eig(A)%只计算所有特征值
    [V,D] = eig(A)%同时得到所有特征向量和特征值
    
    • 1
    • 2

    (8) 广义特征向量

    J = jordan(A)%只计算A矩阵对应的约旦矩阵J
    [V,J] = jordan(A)%所有广义特征向量和约旦矩阵J
    
    • 1
    • 2

    (9) 状态空间模型->约旦型

    x ˙ = [ 0 1 0 0 0 1 − 4 − 8 − 5 ] x + [ 0 0 1 ] u \dot{x}=\left[

    010001485" role="presentation" style="position: relative;">010001485
    \right]x+\left[
    001" role="presentation" style="position: relative;">001
    \right]u x˙= 004108015 x+ 001 u
    y = [ 1 0 0 ] x y=\left[
    100" role="presentation" style="position: relative;">100
    \right]x
    y=[100]x

    A=[0 1 0; 0 0 1; -4 -8 -5];
    B=[0; 0; 1];  C=[1 0 0];  D=0;
    sys_in=ss(A,B,C,D);
    [P,J]=jordan(A);
    sys_out=ss2ss(sys_in,inv(P))
    
    • 1
    • 2
    • 3
    • 4
    • 5
  • 相关阅读:
    【网络安全】实操XSS订单系统漏洞(利用盲打)
    Uniapp零基础开发学习笔记(5) -组件入门及容器组件使用
    多亏这个面试,95后跳槽阿里网友晒工资条
    排序(3)【归并排序】【计数排序】【排序算法度及其稳定性分析】
    Vue 项目部署为 HTTPS 站点
    社交电商需要的各类API推荐
    vs code Conda退出虚拟环境报错 ERROR REPORT
    阿里云关系型数据库RDS详细说明
    信号完整性测试,关于SMA装配的细节,很多人都忽视了
    第17章 标准库特殊设施【C++】
  • 原文地址:https://blog.csdn.net/i13270752870/article/details/134421337