为了测试俩者的区别我写了一个简单赋值int[100000]的程序来对比,并且中间使用了nanoTime来计算时间差:
程序如下:
- int[] a = new int[100000];
- for(int i=0;i
- a[i] = i;
- }
-
- int[] b = new int[100000];
-
- int[] c = new int[100000];
- for(int i=0;i
- c[i] = i;
- }
-
- int[] d = new int[100000];
-
- for(int k=0;k<10;k++){
- long start1 = System.nanoTime();
- for(int i=0;i
- b[i] = a[i];
- }
- long end1 = System.nanoTime();
- System.out.println("end1 - start1 = "+(end1-start1));
-
-
- long start2 = System.nanoTime();
- System.arraycopy(c, 0, d, 0, 100000);
- long end2 = System.nanoTime();
- System.out.println("end2 - start2 = "+(end2-start2));
-
- System.out.println();
- }
为了避免内存不稳定干扰和运行的偶然性结果,我在一开始的时候把所有空间申明完成,并且只之后循环10次执行,得到如下结果:
- end1 - start1 = 366806
- end2 - start2 = 109154
-
- end1 - start1 = 380529
- end2 - start2 = 79849
-
- end1 - start1 = 421422
- end2 - start2 = 68769
-
- end1 - start1 = 344463
- end2 - start2 = 72020
-
- end1 - start1 = 333174
- end2 - start2 = 77277
-
- end1 - start1 = 377335
- end2 - start2 = 82285
-
- end1 - start1 = 370608
- end2 - start2 = 66937
-
- end1 - start1 = 349067
- end2 - start2 = 86532
-
- end1 - start1 = 389974
- end2 - start2 = 83362
-
- end1 - start1 = 347937
- end2 - start2 = 63638
可以看出,System.arraycopy的性能很不错,为了看看究竟这个底层是如何处理的,我找到openJDK的一些代码留恋了一些:
System.arraycopy是一个native函数,需要看native层的代码:
- public static native void arraycopy(Object src, int srcPos,
- Object dest, int destPos,
- int length);
找到对应的openjdk6-src/hotspot/src/share/vm/prims/jvm.cpp,这里有JVM_ArrayCopy的入口:
- JVM_ENTRY(void, JVM_ArrayCopy(JNIEnv *env, jclass ignored, jobject src, jint src_pos,
- jobject dst, jint dst_pos, jint length))
- JVMWrapper("JVM_ArrayCopy");
- // Check if we have null pointers
- if (src == NULL || dst == NULL) {
- THROW(vmSymbols::java_lang_NullPointerException());
- }
- arrayOop s = arrayOop(JNIHandles::resolve_non_null(src));
- arrayOop d = arrayOop(JNIHandles::resolve_non_null(dst));
- assert(s->is_oop(), "JVM_ArrayCopy: src not an oop");
- assert(d->is_oop(), "JVM_ArrayCopy: dst not an oop");
- // Do copy
- Klass::cast(s->klass())->copy_array(s, src_pos, d, dst_pos, length, thread);
- JVM_END
前面的语句都是判断,知道最后的copy_array(s, src_pos, d, dst_pos, length, thread)是真正的copy,进一步看这里,在openjdk6-src/hotspot/src/share/vm/oops/typeArrayKlass.cpp中:
- void typeArrayKlass::copy_array(arrayOop s, int src_pos, arrayOop d, int dst_pos, int length, TRAPS) {
- assert(s->is_typeArray(), "must be type array");
-
- // Check destination
- if (!d->is_typeArray() || element_type() != typeArrayKlass::cast(d->klass())->element_type()) {
- THROW(vmSymbols::java_lang_ArrayStoreException());
- }
-
- // Check is all offsets and lengths are non negative
- if (src_pos < 0 || dst_pos < 0 || length < 0) {
- THROW(vmSymbols::java_lang_ArrayIndexOutOfBoundsException());
- }
- // Check if the ranges are valid
- if ( (((unsigned int) length + (unsigned int) src_pos) > (unsigned int) s->length())
- || (((unsigned int) length + (unsigned int) dst_pos) > (unsigned int) d->length()) ) {
- THROW(vmSymbols::java_lang_ArrayIndexOutOfBoundsException());
- }
- // Check zero copy
- if (length == 0)
- return;
-
- // This is an attempt to make the copy_array fast.
- int l2es = log2_element_size();
- int ihs = array_header_in_bytes() / wordSize;
- char* src = (char*) ((oop*)s + ihs) + ((size_t)src_pos << l2es);
- char* dst = (char*) ((oop*)d + ihs) + ((size_t)dst_pos << l2es);
- Copy::conjoint_memory_atomic(src, dst, (size_t)length << l2es);//还是在这里处理copy
- }
这个函数之前的仍然是一堆判断,直到最后一句才是真实的拷贝语句。
在openjdk6-src/hotspot/src/share/vm/utilities/copy.cpp中找到对应的函数:
- // Copy bytes; larger units are filled atomically if everything is aligned.
- void Copy::conjoint_memory_atomic(void* from, void* to, size_t size) {
- address src = (address) from;
- address dst = (address) to;
- uintptr_t bits = (uintptr_t) src | (uintptr_t) dst | (uintptr_t) size;
-
- // (Note: We could improve performance by ignoring the low bits of size,
- // and putting a short cleanup loop after each bulk copy loop.
- // There are plenty of other ways to make this faster also,
- // and it's a slippery slope. For now, let's keep this code simple
- // since the simplicity helps clarify the atomicity semantics of
- // this operation. There are also CPU-specific assembly versions
- // which may or may not want to include such optimizations.)
-
- if (bits % sizeof(jlong) == 0) {
- Copy::conjoint_jlongs_atomic((jlong*) src, (jlong*) dst, size / sizeof(jlong));
- } else if (bits % sizeof(jint) == 0) {
- Copy::conjoint_jints_atomic((jint*) src, (jint*) dst, size / sizeof(jint));
- } else if (bits % sizeof(jshort) == 0) {
- Copy::conjoint_jshorts_atomic((jshort*) src, (jshort*) dst, size / sizeof(jshort));
- } else {
- // Not aligned, so no need to be atomic.
- Copy::conjoint_jbytes((void*) src, (void*) dst, size);
- }
- }
上面的代码展示了选择哪个copy函数,我们选择conjoint_jints_atomic,在openjdk6-src/hotspot/src/share/vm/utilities/copy.hpp进一步查看:
- // jints, conjoint, atomic on each jint
- static void conjoint_jints_atomic(jint* from, jint* to, size_t count) {
- assert_params_ok(from, to, LogBytesPerInt);
- pd_conjoint_jints_atomic(from, to, count);
- }
继续向下查看,在openjdk6-src/hotspot/src/cpu/zero/vm/copy_zero.hpp中:
- static void pd_conjoint_jints_atomic(jint* from, jint* to, size_t count) {
- _Copy_conjoint_jints_atomic(from, to, count);
- }
继续向下查看,在openjdk6-src/hotspot/src/os_cpu/linux_zero/vm/os_linux_zero.cpp中:
- void _Copy_conjoint_jints_atomic(jint* from, jint* to, size_t count) {
- if (from > to) {
- jint *end = from + count;
- while (from < end)
- *(to++) = *(from++);
- }
- else if (from < to) {
- jint *end = from;
- from += count - 1;
- to += count - 1;
- while (from >= end)
- *(to--) = *(from--);
- }
- }
可以看到,直接就是内存块赋值的逻辑了,这样避免很多引用来回倒腾的时间,必然就变快了。
-
相关阅读:
内存模型以及如何判定对象已死问题
聊聊日志硬扫描,阿里 Log Scan 的设计与实践
面试官喜欢问Nacos原理?直接把这篇文章甩给他!
redis的配置文件
Day 91
C现代方法(第3、4章)笔记
【基础教程】Matlab实现指数威布尔分布
数据结构(九)顺序栈
【Java Web】统一处理异常
如何删除gitlab上多余的文件夹
-
原文地址:https://blog.csdn.net/xiaopangcame/article/details/134296614