• Flink日志采集-ELK可视化实现


    一、各组件版本

    组件版本
    Flink1.16.1
    kafka2.0.0
    Logstash6.5.4
    Elasticseach6.3.1
    Kibana6.3.1

      针对按照⽇志⽂件⼤⼩滚动⽣成⽂件的⽅式,可能因为某个错误的问题,需要看好多个⽇志⽂件,还有Flink on Yarn模式提交Flink任务,在任务执行完毕或者任务报错后container会被回收从而导致日志丢失,为了方便排查问题可以把⽇志⽂件通过KafkaAppender写⼊到kafka中,然后通过ELK等进⾏⽇志搜索甚⾄是分析告警。

    二、Flink配置将日志写入Kafka

    2.1 flink-conf.yaml增加下面两行配置信息

    env.java.opts.taskmanager: -DyarnContainerId=$CONTAINER_ID
    env.java.opts.jobmanager: -DyarnContainerId=$CONTAINER_ID

    2.2 log4j.properties配置案例如下

    ##################################################################
    #  Licensed to the Apache Software Foundation (ASF) under one
    #  or more contributor license agreements.  See the NOTICE file
    #  distributed with this work for additional information
    #  regarding copyright ownership.  The ASF licenses this file
    #  to you under the Apache License, Version 2.0 (the
    #  "License"); you may not use this file except in compliance
    #  with the License.  You may obtain a copy of the License at
    #
    #      http://www.apache.org/licenses/LICENSE-2.0
    #
    #  Unless required by applicable law or agreed to in writing, software
    #  distributed under the License is distributed on an "AS IS" BASIS,
    #  WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
    #  See the License for the specific language governing permissions and
    # limitations under the License.
    ##################################################################
    # Allows this configuration to be modified at runtime. The file will be checked every 30 seconds.
    monitorInterval=30
    
    # This affects logging for both user code and Flink
    #rootLogger.appenderRef.file.ref = MainAppender
    rootLogger.level = INFO
    rootLogger.appenderRef.kafka.ref = Kafka
    rootLogger.appenderRef.file.ref = RollingFileAppender
    
    # Uncomment this if you want to _only_ change Flink's logging
    #logger.flink.name = org.apache.flink
    #logger.flink.level = INFO
    
    # The following lines keep the log level of common libraries/connectors on
    # log level INFO. The root logger does not override this. You have to manually
    # change the log levels here.
    logger.akka.name = akka
    logger.akka.level = INFO
    logger.kafka.name= org.apache.kafka
    logger.kafka.level = INFO
    logger.hadoop.name = org.apache.hadoop
    logger.hadoop.level = INFO
    logger.zookeeper.name = org.apache.zookeeper
    logger.zookeeper.level = INFO
    logger.shaded_zookeeper.name = org.apache.flink.shaded.zookeeper3
    logger.shaded_zookeeper.level = INFO
    
    # Log all infos in the given file
    appender.rolling.name = RollingFileAppender
    appender.rolling.type = RollingFile
    appender.rolling.append = false
    appender.rolling.fileName = ${sys:log.file}
    appender.rolling.filePattern = ${sys:log.file}.%i
    appender.rolling.layout.type = PatternLayout
    appender.rolling.layout.pattern = %d{yyyy-MM-dd HH:mm:ss,SSS} %-5p %-60c %x - %m%n
    appender.rolling.policies.type = Policies
    appender.rolling.policies.size.type = SizeBasedTriggeringPolicy
    appender.rolling.policies.size.size = 500MB
    appender.rolling.strategy.type = DefaultRolloverStrategy
    appender.rolling.strategy.max = 10
    
    #appender.main.name = MainAppender
    #appender.main.type = RollingFile
    #appender.main.append = true
    #appender.main.fileName = ${sys:log.file}
    #appender.main.filePattern = ${sys:log.file}.%i
    #appender.main.layout.type = PatternLayout
    #appender.main.layout.pattern = %d{yyyy-MM-dd HH:mm:ss,SSS} %-5p %-60c %x - %m%n
    #appender.main.policies.type = Policies
    #appender.main.policies.size.type = SizeBasedTriggeringPolicy
    #appender.main.policies.size.size = 100MB
    #appender.main.policies.startup.type = OnStartupTriggeringPolicy
    #appender.main.strategy.type = DefaultRolloverStrategy
    #appender.main.strategy.max = ${env:MAX_LOG_FILE_NUMBER:-10}
    
    # kafka
    appender.kafka.type = Kafka
    appender.kafka.name = Kafka
    appender.kafka.syncSend = true
    appender.kafka.ignoreExceptions = false
    appender.kafka.topic = flink_logs
    appender.kafka.property.type = Property
    appender.kafka.property.name = bootstrap.servers
    appender.kafka.property.value = xxx1:9092,xxx2:9092,xxx3:9092
    appender.kafka.layout.type = JSONLayout
    apender.kafka.layout.value = net.logstash.log4j.JSONEventLayoutV1
    appender.kafka.layout.compact = true
    appender.kafka.layout.complete = false
    
    # Suppress the irrelevant (wrong) warnings from the Netty channel handler
    #logger.netty.name = org.jboss.netty.channel.DefaultChannelPipeline
    logger.netty.name = org.apache.flink.shaded.akka.org.jboss.netty.channel.DefaultChannelPipeline
    logger.netty.level = OFF
    
    #通过 flink on yarn 模式还可以添加⾃定义字段
    # 日志路径
    appender.kafka.layout.additionalField1.type = KeyValuePair
    appender.kafka.layout.additionalField1.key = logdir
    appender.kafka.layout.additionalField1.value = ${sys:log.file}
    # flink-job-name
    appender.kafka.layout.additionalField2.type = KeyValuePair
    appender.kafka.layout.additionalField2.key = flinkJobName
    appender.kafka.layout.additionalField2.value = ${sys:flinkJobName}
    # 提交到yarn的containerId
    appender.kafka.layout.additionalField3.type = KeyValuePair
    appender.kafka.layout.additionalField3.key = yarnContainerId
    appender.kafka.layout.additionalField3.value = ${sys:yarnContainerId}
    
    • 1
    • 2
    • 3
    • 4
    • 5
    • 6
    • 7
    • 8
    • 9
    • 10
    • 11
    • 12
    • 13
    • 14
    • 15
    • 16
    • 17
    • 18
    • 19
    • 20
    • 21
    • 22
    • 23
    • 24
    • 25
    • 26
    • 27
    • 28
    • 29
    • 30
    • 31
    • 32
    • 33
    • 34
    • 35
    • 36
    • 37
    • 38
    • 39
    • 40
    • 41
    • 42
    • 43
    • 44
    • 45
    • 46
    • 47
    • 48
    • 49
    • 50
    • 51
    • 52
    • 53
    • 54
    • 55
    • 56
    • 57
    • 58
    • 59
    • 60
    • 61
    • 62
    • 63
    • 64
    • 65
    • 66
    • 67
    • 68
    • 69
    • 70
    • 71
    • 72
    • 73
    • 74
    • 75
    • 76
    • 77
    • 78
    • 79
    • 80
    • 81
    • 82
    • 83
    • 84
    • 85
    • 86
    • 87
    • 88
    • 89
    • 90
    • 91
    • 92
    • 93
    • 94
    • 95
    • 96
    • 97
    • 98
    • 99
    • 100
    • 101
    • 102
    • 103
    • 104

      上⾯的 appender.kafka.layout.type 可以使⽤ JSONLayout ,也可以⾃定义。

      ⾃定义需要将上⾯的appender.kafka.layout.type 和 appender.kafka.layout.value 修改成如下:

    appender.kafka.layout.type = PatternLayout
    appender.kafka.layout.pattern ={"log_level":"%p","log_timestamp":"%d{ISO8601}","log_thread":"%t","log_file":"%F","l
    og_line":"%L","log_message":"'%m'","log_path":"%X{log_path}","job_name":"${sys:flink
    _job_name}"}%n
    
    • 1
    • 2
    • 3
    • 4

    2.3 基于Flink on yarn模式提交任务前期准备

    2.3.1 需要根据kafka的版本在flink/lib⽬录下放⼊kafka-clients的jar包

    在这里插入图片描述

    2.3.2 kafka处于启动状态

    2.3.3 Flink Standalone集群

    # 根据kafka的版本放⼊kafka-clients
    kafka-clients-3.1.0.jar
    # jackson对应的jar包
    jackson-annotations-2.13.3.jar
    jackson-core-2.13.3.jar
    jackson-databind-2.13.3.jar
    
    • 1
    • 2
    • 3
    • 4
    • 5
    • 6

    2.4 Flink on yarn任务提交案例

    /root/software/flink-1.16.1/bin/flink run-application \
    -t yarn-application \
    -D yarn.application.name=TopSpeedWindowing \
    -D parallelism.default=3 \
    -D jobmanager.memory.process.size=2g \
    -D taskmanager.memory.process.size=2g \
    -D env.java.opts="-DflinkJobName=TopSpeedWindowing" \
    /root/software/flink-1.16.1/examples/streaming/TopSpeedWindowing.jar
    
    • 1
    • 2
    • 3
    • 4
    • 5
    • 6
    • 7
    • 8

    【注意】启动脚本需要加入这个参数,日志才能采集到任务名称(-D env.java.opts="-DflinkJobName=xxx")

      消费flink_logs案例

    {
        instant: {
            epochSecond: 1698723428,
            nanoOfSecond: 544000000,
        },
        thread: 'flink-akka.actor.default-dispatcher-17',
        level: 'INFO',
        loggerName: 'org.apache.flink.runtime.rpc.akka.AkkaRpcService',
        message: 'Stopped Akka RPC service.',
        endOfBatch: false,
        loggerFqcn: 'org.apache.logging.slf4j.Log4jLogger',
        threadId: 68,
        threadPriority: 5,
        logdir: '/yarn/container-logs/application_1697779774806_0046/container_1697779774806_0046_01_000002/taskmanager.log',
        flinkJobName: 'flink-log-collect-test',
        yarnContainerId: 'container_1697779774806_0046_01_000002',
    }
    
    • 1
    • 2
    • 3
    • 4
    • 5
    • 6
    • 7
    • 8
    • 9
    • 10
    • 11
    • 12
    • 13
    • 14
    • 15
    • 16
    • 17

      ⽇志写⼊Kafka之后可以通过Logstash接⼊elasticsearch,然后通过kibana进⾏查询或搜索

    三、LogStash部署

      部署过程略,网上都有

      需要注意Logstash内部kafka-clients和Kafka版本兼容问题,需要根据Kafka版本选择合适的Logstash版本

      将以下内容写⼊config/logstash-sample.conf ⽂件中

    input {
    	kafka {
    		bootstrap_servers => ["xxx1:9092,xxx2:9092,xxx3:9092"] 
    		group_id => "logstash-group"
    		topics => ["flink_logs"] 
    		consumer_threads => 3 
    		type => "flink-logs" 
    		codec => "json"
    		auto_offset_reset => "latest"
    	}
    }
    
    output {
    	elasticsearch {
    		hosts => ["xxx:9200"] 
    		index => "flink-log-%{+YYYY-MM-dd}"
    	}
    }
    
    • 1
    • 2
    • 3
    • 4
    • 5
    • 6
    • 7
    • 8
    • 9
    • 10
    • 11
    • 12
    • 13
    • 14
    • 15
    • 16
    • 17
    • 18

      Logstash启动:

    logstash-6.5.4/bin/logstash -f logstash-6.5.4/config/logstash-sample.conf 2>&1 >logstash-6.5.4/logs/logstash.log &
    
    • 1

    四、Elasticsearch部署

      部署过程略,网上都有

      注意需要用root用户以外的用户启动Elasticsearch

      启动脚本:

    Su elasticsearchlogtest
    
    elasticsearch-6.3.1/bin/elasticsearch
    
    • 1
    • 2
    • 3

    在这里插入图片描述

      Windows访问ES客户端推荐使用ElasticHD,本地运行后可以直连ES
    在这里插入图片描述

    五、Kibana部署

      部署过程略,网上都有

      启动脚本:

      kibana-6.3.1-linux-x86_64/bin/kibana

    5.1 配置规则

    在这里插入图片描述
    在这里插入图片描述

    5.2 日志分析

    在这里插入图片描述

  • 相关阅读:
    Linux下安装navicat
    【微服务 从0开始 】Spring Cloud —— 比xml更适合的配置文件yaml
    扩散模型学习
    IDEA中 GIT基础操作
    【机器学习】数值分析02——任意方程求根
    计算模型参数量的方法
    Ubuntu下安装、运行Nginx
    攻防世界WEB练习-favorite_number
    Spring Boot + Redis的整合实现
    ESP8266-Arduino编程实例-APDS-9930环境光和趋近感器驱动
  • 原文地址:https://blog.csdn.net/qq_40640228/article/details/134197060