• 机器学习-朴素贝叶斯之多项式模型


    多项式模型:

    记住一定用于离散的对象,不能是连续的
    于高斯分布相反,多项式模型主要适用于离散特征的概率计算,切sklearn的多项式模型不接受输入负值
    因为多项式不接受负值的输入,所以样本数据的特征为数值型数据,必须归一化处理保证数据里没有负数
    其中需要用到贝叶斯概率公式:如下
    当分子出现0时候,需要用到拉普拉斯平滑系数
    
    • 1
    • 2
    • 3
    • 4
    • 5

    贝叶斯概率公式,来自Wang’s Blog的原创

    模型构建与训练:

    需要用到的api是:
    	from sklearn.naive_bayes import MultinomialNB
    我们还需要对文章内容进行提取需要用到的api是:
    	from sklearn.feature_extraction.text import TfidfVectorizer
    英文的可以用这种方法进行分词中文的需要自己进行分词
    
    • 1
    • 2
    • 3
    • 4
    • 5

    实验如下:

    导入贝叶斯多项式模型

    from sklearn.naive_bayes import MultinomialNB
    from sklearn.feature_extraction.text import TfidfVectorizer
    from sklearn.model_selection import train_test_split
    import sklearn.datasets as datasets
    data = datasets.fetch_20newsgroups(data_home='./datasets',subset='all')
    feature = data['data']#初始未进行特征值化
    target = data['target']
    # 分别创建模型,数据统计的实例对象
    nb = MultinomialNB()
    tf = TfidfVectorizer()
    tf_feature = tf.fit_transform(feature)# 进行了特征值化
    # 进行数据集切分
    x_train, x_test, y_train, y_test = train_test_split(tf_feature,target,test_size=0.1,random_state=2023)
    # 将训练集放入模型中进行训练模型
    nb.fit(x_train,y_train)
    # 输出训练后的模型里放入测试集的准确率
    print(nb.score(x_test,y_test))
    print(target)
    print(feature)
    
    • 1
    • 2
    • 3
    • 4
    • 5
    • 6
    • 7
    • 8
    • 9
    • 10
    • 11
    • 12
    • 13
    • 14
    • 15
    • 16
    • 17
    • 18
    • 19

    输出结果:
    显示的没办法爬数据,我又换了一组数据

    # 导入贝叶斯多项式模型
    from sklearn.naive_bayes import MultinomialNB
    from sklearn.feature_extraction.text import TfidfVectorizer
    from sklearn.model_selection import train_test_split
    import sklearn.datasets as datasets
    # data = datasets.fetch_20newsgroups(data_home='./datasets', subset='all')
    data = datasets.load_iris()
    feature = data['data']#初始未进行特征值化
    target = data['target']
    # 分别创建模型,数据统计的实例对象
    nb = MultinomialNB()
    # tf = TfidfVectorizer()
    # feature = tf.fit_transform(feature)# 进行了特征值化
    # 进行数据集切分
    x_train, x_test, y_train, y_test = train_test_split(feature,target,test_size=0.1,random_state=2023)
    # 将训练集放入模型中进行训练模型
    nb.fit(x_train,y_train)
    
    print(target)
    print(feature)
    # 输出训练后的模型里放入测试集的准确率
    print(nb.score(x_test,y_test))
    
    • 1
    • 2
    • 3
    • 4
    • 5
    • 6
    • 7
    • 8
    • 9
    • 10
    • 11
    • 12
    • 13
    • 14
    • 15
    • 16
    • 17
    • 18
    • 19
    • 20
    • 21
    • 22

    此时输出结果:

    	[0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
     0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
     1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 2 2 2
     2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
     2 2]
    [[5.1 3.5 1.4 0.2]
     [4.9 3.  1.4 0.2]
     [4.7 3.2 1.3 0.2]
     [4.6 3.1 1.5 0.2]
     [5.  3.6 1.4 0.2]
     [5.4 3.9 1.7 0.4]
     [4.6 3.4 1.4 0.3]
     [5.  3.4 1.5 0.2]
     [4.4 2.9 1.4 0.2]
     [4.9 3.1 1.5 0.1]
     [5.4 3.7 1.5 0.2]
     [4.8 3.4 1.6 0.2]
     [4.8 3.  1.4 0.1]
     [4.3 3.  1.1 0.1]
     [5.8 4.  1.2 0.2]
     [5.7 4.4 1.5 0.4]
     [5.4 3.9 1.3 0.4]
     [5.1 3.5 1.4 0.3]
     [5.7 3.8 1.7 0.3]
     [5.1 3.8 1.5 0.3]
     [5.4 3.4 1.7 0.2]
     [5.1 3.7 1.5 0.4]
     [4.6 3.6 1.  0.2]
     [5.1 3.3 1.7 0.5]
     [4.8 3.4 1.9 0.2]
     [5.  3.  1.6 0.2]
     [5.  3.4 1.6 0.4]
     [5.2 3.5 1.5 0.2]
     [5.2 3.4 1.4 0.2]
     [4.7 3.2 1.6 0.2]
     [4.8 3.1 1.6 0.2]
     [5.4 3.4 1.5 0.4]
     [5.2 4.1 1.5 0.1]
     [5.5 4.2 1.4 0.2]
     [4.9 3.1 1.5 0.2]
     [5.  3.2 1.2 0.2]
     [5.5 3.5 1.3 0.2]
     [4.9 3.6 1.4 0.1]
     [4.4 3.  1.3 0.2]
     [5.1 3.4 1.5 0.2]
     [5.  3.5 1.3 0.3]
     [4.5 2.3 1.3 0.3]
     [4.4 3.2 1.3 0.2]
     [5.  3.5 1.6 0.6]
     [5.1 3.8 1.9 0.4]
     [4.8 3.  1.4 0.3]
     [5.1 3.8 1.6 0.2]
     [4.6 3.2 1.4 0.2]
     [5.3 3.7 1.5 0.2]
     [5.  3.3 1.4 0.2]
     [7.  3.2 4.7 1.4]
     [6.4 3.2 4.5 1.5]
     [6.9 3.1 4.9 1.5]
     [5.5 2.3 4.  1.3]
     [6.5 2.8 4.6 1.5]
     [5.7 2.8 4.5 1.3]
     [6.3 3.3 4.7 1.6]
     [4.9 2.4 3.3 1. ]
     [6.6 2.9 4.6 1.3]
     [5.2 2.7 3.9 1.4]
     [5.  2.  3.5 1. ]
     [5.9 3.  4.2 1.5]
     [6.  2.2 4.  1. ]
     [6.1 2.9 4.7 1.4]
     [5.6 2.9 3.6 1.3]
     [6.7 3.1 4.4 1.4]
     [5.6 3.  4.5 1.5]
     [5.8 2.7 4.1 1. ]
     [6.2 2.2 4.5 1.5]
     [5.6 2.5 3.9 1.1]
     [5.9 3.2 4.8 1.8]
     [6.1 2.8 4.  1.3]
     [6.3 2.5 4.9 1.5]
     [6.1 2.8 4.7 1.2]
     [6.4 2.9 4.3 1.3]
     [6.6 3.  4.4 1.4]
     [6.8 2.8 4.8 1.4]
     [6.7 3.  5.  1.7]
     [6.  2.9 4.5 1.5]
     [5.7 2.6 3.5 1. ]
     [5.5 2.4 3.8 1.1]
     [5.5 2.4 3.7 1. ]
     [5.8 2.7 3.9 1.2]
     [6.  2.7 5.1 1.6]
     [5.4 3.  4.5 1.5]
     [6.  3.4 4.5 1.6]
     [6.7 3.1 4.7 1.5]
     [6.3 2.3 4.4 1.3]
     [5.6 3.  4.1 1.3]
     [5.5 2.5 4.  1.3]
     [5.5 2.6 4.4 1.2]
     [6.1 3.  4.6 1.4]
     [5.8 2.6 4.  1.2]
     [5.  2.3 3.3 1. ]
     [5.6 2.7 4.2 1.3]
     [5.7 3.  4.2 1.2]
     [5.7 2.9 4.2 1.3]
     [6.2 2.9 4.3 1.3]
     [5.1 2.5 3.  1.1]
     [5.7 2.8 4.1 1.3]
     [6.3 3.3 6.  2.5]
     [5.8 2.7 5.1 1.9]
     [7.1 3.  5.9 2.1]
     [6.3 2.9 5.6 1.8]
     [6.5 3.  5.8 2.2]
     [7.6 3.  6.6 2.1]
     [4.9 2.5 4.5 1.7]
     [7.3 2.9 6.3 1.8]
     [6.7 2.5 5.8 1.8]
     [7.2 3.6 6.1 2.5]
     [6.5 3.2 5.1 2. ]
     [6.4 2.7 5.3 1.9]
     [6.8 3.  5.5 2.1]
     [5.7 2.5 5.  2. ]
     [5.8 2.8 5.1 2.4]
     [6.4 3.2 5.3 2.3]
     [6.5 3.  5.5 1.8]
     [7.7 3.8 6.7 2.2]
     [7.7 2.6 6.9 2.3]
     [6.  2.2 5.  1.5]
     [6.9 3.2 5.7 2.3]
     [5.6 2.8 4.9 2. ]
     [7.7 2.8 6.7 2. ]
     [6.3 2.7 4.9 1.8]
     [6.7 3.3 5.7 2.1]
     [7.2 3.2 6.  1.8]
     [6.2 2.8 4.8 1.8]
     [6.1 3.  4.9 1.8]
     [6.4 2.8 5.6 2.1]
     [7.2 3.  5.8 1.6]
     [7.4 2.8 6.1 1.9]
     [7.9 3.8 6.4 2. ]
     [6.4 2.8 5.6 2.2]
     [6.3 2.8 5.1 1.5]
     [6.1 2.6 5.6 1.4]
     [7.7 3.  6.1 2.3]
     [6.3 3.4 5.6 2.4]
     [6.4 3.1 5.5 1.8]
     [6.  3.  4.8 1.8]
     [6.9 3.1 5.4 2.1]
     [6.7 3.1 5.6 2.4]
     [6.9 3.1 5.1 2.3]
     [5.8 2.7 5.1 1.9]
     [6.8 3.2 5.9 2.3]
     [6.7 3.3 5.7 2.5]
     [6.7 3.  5.2 2.3]
     [6.3 2.5 5.  1.9]
     [6.5 3.  5.2 2. ]
     [6.2 3.4 5.4 2.3]
     [5.9 3.  5.1 1.8]]
    0.9333333333333333
    
    • 1
    • 2
    • 3
    • 4
    • 5
    • 6
    • 7
    • 8
    • 9
    • 10
    • 11
    • 12
    • 13
    • 14
    • 15
    • 16
    • 17
    • 18
    • 19
    • 20
    • 21
    • 22
    • 23
    • 24
    • 25
    • 26
    • 27
    • 28
    • 29
    • 30
    • 31
    • 32
    • 33
    • 34
    • 35
    • 36
    • 37
    • 38
    • 39
    • 40
    • 41
    • 42
    • 43
    • 44
    • 45
    • 46
    • 47
    • 48
    • 49
    • 50
    • 51
    • 52
    • 53
    • 54
    • 55
    • 56
    • 57
    • 58
    • 59
    • 60
    • 61
    • 62
    • 63
    • 64
    • 65
    • 66
    • 67
    • 68
    • 69
    • 70
    • 71
    • 72
    • 73
    • 74
    • 75
    • 76
    • 77
    • 78
    • 79
    • 80
    • 81
    • 82
    • 83
    • 84
    • 85
    • 86
    • 87
    • 88
    • 89
    • 90
    • 91
    • 92
    • 93
    • 94
    • 95
    • 96
    • 97
    • 98
    • 99
    • 100
    • 101
    • 102
    • 103
    • 104
    • 105
    • 106
    • 107
    • 108
    • 109
    • 110
    • 111
    • 112
    • 113
    • 114
    • 115
    • 116
    • 117
    • 118
    • 119
    • 120
    • 121
    • 122
    • 123
    • 124
    • 125
    • 126
    • 127
    • 128
    • 129
    • 130
    • 131
    • 132
    • 133
    • 134
    • 135
    • 136
    • 137
    • 138
    • 139
    • 140
    • 141
    • 142
    • 143
    • 144
    • 145
    • 146
    • 147
    • 148
    • 149
    • 150
    • 151
    • 152
    • 153
    • 154
    • 155
    • 156

    输出的效果还挺不错

  • 相关阅读:
    JAVA计算机毕业设计音乐播放器Mybatis+源码+数据库+lw文档+系统+调试部署
    linux C语言 socket的server、client 实现
    程序设计与c语言笔记(一)
    mysql常用命令积累
    Python数据库编程之关系数据库API规范
    华为机考:HJ43 迷宫问题
    1.5 计算机网络的类别
    Java学习 8.Java-递归
    哈夫曼树(理论)
    基于 RocksDB 实现高可靠、低时延的 MQTT 数据持久化
  • 原文地址:https://blog.csdn.net/qq_38404903/article/details/134083418