model
import torch
import torch.nn as nn
class ResidualBlock(nn.Module):
def __init__(self, dim):
super().__init__()
self.relu = nn.ReLU()
self.conv1 = nn.Conv2d(dim, dim, 3, 1, 1)
self.conv2 = nn.Conv2d(dim, dim, 1)
def forward(self, x):
tmp = self.relu(x)
tmp = self.conv1(tmp)
tmp = self.relu(tmp)
tmp = self.conv2(tmp)
return x + tmp
class VQVAE(nn.Module):
def __init__(self, input_dim, dim, n_embedding):
super().__init__()
self.encoder = nn.Sequential(nn.Conv2d(input_dim, dim, 4, 2, 1),
nn.ReLU(), nn.Conv2d(dim, dim, 4, 2, 1),
nn.ReLU(), nn.Conv2d(dim, dim, 3, 1, 1),
ResidualBlock(dim), ResidualBlock(dim))
self.vq_embedding = nn.Embedding(n_embedding, dim)
self.vq_embedding.weight.data.uniform_(-1.0 / n_embedding,
1.0 / n_embedding)
self.decoder = nn.Sequential(
nn.Conv2d(dim, dim, 3, 1, 1),
ResidualBlock(dim), ResidualBlock(dim),
nn.ConvTranspose2d(dim, dim, 4, 2, 1), nn.ReLU(),
nn.ConvTranspose2d(dim, input_dim, 4, 2, 1))
self.n_downsample = 2
def forward(self, x):
ze = self.encoder(x)
embedding = self.vq_embedding.weight.data
N, C, H, W = ze.shape
K, _ = embedding.shape
embedding_broadcast = embedding.reshape(1, K, C, 1, 1)
ze_broadcast = ze.reshape(N, 1, C, H, W)
distance = torch.sum((embedding_broadcast - ze_broadcast)**2, 2)
nearest_neighbor = torch.argmin(distance, 1)
zq = self.vq_embedding(nearest_neighbor).permute(0, 3, 1, 2)
decoder_input = ze + (zq - ze).detach()
x_hat = self.decoder(decoder_input)
return x_hat, ze, zq
@torch.no_grad()
def encode(self, x):
ze = self.encoder(x)
embedding = self.vq_embedding.weight.data
N, C, H, W = ze.shape
K, _ = embedding.shape
embedding_broadcast = embedding.reshape(1, K, C, 1, 1)
ze_broadcast = ze.reshape(N, 1, C, H, W)
distance = torch.sum((embedding_broadcast - ze_broadcast)**2, 2)
nearest_neighbor = torch.argmin(distance, 1)
return nearest_neighbor
@torch.no_grad()
def decode(self, discrete_latent):
zq = self.vq_embedding(discrete_latent).permute(0, 3, 1, 2)
x_hat = self.decoder(zq)
return x_hat
def get_latent_HW(self, input_shape):
C, H, W = input_shape
return (H // 2**self.n_downsample, W // 2**self.n_downsample)
- 1
- 2
- 3
- 4
- 5
- 6
- 7
- 8
- 9
- 10
- 11
- 12
- 13
- 14
- 15
- 16
- 17
- 18
- 19
- 20
- 21
- 22
- 23
- 24
- 25
- 26
- 27
- 28
- 29
- 30
- 31
- 32
- 33
- 34
- 35
- 36
- 37
- 38
- 39
- 40
- 41
- 42
- 43
- 44
- 45
- 46
- 47
- 48
- 49
- 50
- 51
- 52
- 53
- 54
- 55
- 56
- 57
- 58
- 59
- 60
- 61
- 62
- 63
- 64
- 65
- 66
- 67
- 68
- 69
- 70
- 71
- 72
- 73
- 74
- 75
- 76
- 77
- 78
- 79
- 80
- 81
- 82
- 83
- 84
main
def train_vqvae(model: VQVAE,
img_shape=None,
device='cuda',
ckpt_path='dldemos/VQVAE/model.pth',
batch_size=64,
dataset_type='MNIST',
lr=1e-3,
n_epochs=100,
l_w_embedding=1,
l_w_commitment=0.25):
print('batch size:', batch_size)
dataloader = get_dataloader(dataset_type,
batch_size,
img_shape=img_shape,
use_lmdb=USE_LMDB)
model.to(device)
model.train()
optimizer = torch.optim.Adam(model.parameters(), lr)
mse_loss = nn.MSELoss()
tic = time.time()
for e in range(n_epochs):
total_loss = 0
for x in dataloader:
current_batch_size = x.shape[0]
x = x.to(device)
x_hat, ze, zq = model(x)
l_reconstruct = mse_loss(x, x_hat)
l_embedding = mse_loss(ze.detach(), zq)
l_commitment = mse_loss(ze, zq.detach())
loss = l_reconstruct + \
l_w_embedding * l_embedding + l_w_commitment * l_commitment
optimizer.zero_grad()
loss.backward()
optimizer.step()
total_loss += loss.item() * current_batch_size
total_loss /= len(dataloader.dataset)
toc = time.time()
torch.save(model.state_dict(), ckpt_path)
print(f'epoch {e} loss: {total_loss} elapsed {(toc - tic):.2f}s')
print('Done')
- 1
- 2
- 3
- 4
- 5
- 6
- 7
- 8
- 9
- 10
- 11
- 12
- 13
- 14
- 15
- 16
- 17
- 18
- 19
- 20
- 21
- 22
- 23
- 24
- 25
- 26
- 27
- 28
- 29
- 30
- 31
- 32
- 33
- 34
- 35
- 36
- 37
- 38
- 39
- 40
- 41
- 42