请必须使用时间复杂度为 O ( l o g n ) O(log n) O(logn)的算法。
示例 1:
输入: nums = [1,3,5,6], target = 5
输出: 2
示例 2:
输入: nums = [1,3,5,6], target = 2
输出: 1
示例 3:
输入: nums = [1,3,5,6], target = 7
输出: 4
提示:
nums.length <=
1
0
4
10^4
104nums[i] <=
1
0
4
10^4
104nums 为 无重复元素 的 升序 排列数组target <=
1
0
4
10^4
104class Solution {
public:
int searchInsert(vector<int>& nums, int target) {
int len = nums.size();
int left = 0;
int right = len-1;
int pos = 0;
while(left <= right){
int mid = (left+right) >> 1;
if(nums[mid] == target) return mid;
else if(nums[mid] < target){
left = mid+1;
// left就是升序情况下 应该插入的位置
pos = left;
}else{
right = mid-1;
}
}
return pos;
}
};


class Solution {
public:
int searchInsert(vector<int>& nums, int target) {
int n = nums.size();
int left = 0, right = n - 1, ans = n;
while (left <= right) {
int mid = ((right - left) >> 1) + left;
if (target <= nums[mid]) {
// mid = left + (difference)>>1 (Key: 找到第一个下标,对应值 >= target)
ans = mid;
right = mid - 1;
} else {
left = mid + 1;
}
}
return ans;
}
};

class Solution {
public:
int searchInsert(vector<int>& nums, int target) {
auto it = find(nums.begin(),nums.end(),target);
if(it!=nums.end()){
return it-nums.begin();
}
auto first =lower_bound(nums.begin(), nums.end(), target);
return first-nums.begin();
}
};

class Solution {
public:
int searchInsert(vector<int>& nums, int target) {
auto st = nums.cbegin(), ed = nums.cend();
return lower_bound(st, ed, target) - st;
}
};
