题目
给定一个有N个顶点和E条边的无向图,请用DFS和BFS分别列出其所有的连通集。假设顶点从0到N−1编号。进行搜索时,假设我们总是从编号最小的顶点出发,按编号递增的顺序访问邻接点。
输入格式:
输入第1行给出2个整数N(0
输出格式:
按照"{ v
1
v
2
… v
k
}"的格式,每行输出一个连通集。先输出DFS的结果,再输出BFS的结果。
输入样例:
8 6
0 7
0 1
2 0
4 1
2 4
3 5
输出样例:
{ 0 1 4 2 7 }
{ 3 5 }
{ 6 }
{ 0 1 2 7 4 }
{ 3 5 }
{ 6 }
代码
#include
#include
#include
#define MAX_VERTEX_NUM 10
#define ELEMENT_TYPE int
#define ERROR -1
#define QUEUE_SIZE 10
typedef int Vertex;
struct _Queue
{
ELEMENT_TYPE *data;
int front, rear;
int size;
};
typedef struct _Queue *Queue;
struct _Edge
{
int v, w;
};
typedef struct _Edge *Edge;
struct _MGraph
{
int nv, ne;
int graph[MAX_VERTEX_NUM][MAX_VERTEX_NUM];
};
typedef struct _MGraph *MGraph;
Queue createQueue(ELEMENT_TYPE size);
bool isFull(Queue q);
bool isEmpty(Queue q);
bool addQ(Queue q, ELEMENT_TYPE x);
ELEMENT_TYPE delQ(Queue q);
void initVisited(bool visited[]);
bool isEdge(MGraph g, Vertex v, Vertex w);
MGraph createGraph(int numVertices);
void insertEdge(MGraph g, Edge e);
MGraph buildGraph();
void dfs(MGraph g, Vertex v);
void bfs(MGraph g, Vertex s);
void listComponentsViaDFS(MGraph g);
void listComponentsViaBFS(MGraph g);
bool visited[MAX_VERTEX_NUM] = {false};
int main()
{
MGraph g = buildGraph();
listComponentsViaDFS(g);
initVisited(visited);
listComponentsViaBFS(g);
free(g);
return 0;
}
void initVisited(bool visited[])
{
Vertex v;
for (v = 0; v < MAX_VERTEX_NUM; v++)
visited[v] = false;
}
bool isEdge(MGraph g, Vertex v, Vertex w)
{
return g->graph[v][w] == 1;
}
MGraph createGraph(int numVertices)
{
MGraph g = (MGraph)malloc(sizeof(struct _MGraph));
g->nv = numVertices;
g->ne = 0;
Vertex v, w;
for (v = 0; v < g->nv; v++)
for (w = 0; w < g->nv; w++)
g->graph[v][w] = 0;
return g;
}
void insertEdge(MGraph g, Edge e)
{
g->graph[e->v][e->w] = 1;
g->graph[e->w][e->v] = 1;
}
MGraph buildGraph()
{
MGraph g;
Edge e;
Vertex v;
int nv, ne;
scanf("%d %d", &nv, &ne);
g = createGraph(nv);
if (ne)
{
g->ne = ne;
e = (Edge)malloc(sizeof(struct _Edge));
for (v = 0; v < g->ne; v++)
{
scanf("%d %d", &e->v, &e->w);
insertEdge(g, e);
}
free(e);
}
return g;
}
void dfs(MGraph g, Vertex v)
{
visited[v] = true;
printf("%d ", v);
Vertex w;
for (w = 0; w < g->nv; w++)
{
if (!visited[w] && isEdge(g, v, w))
{
dfs(g, w);
}
}
}
void listComponentsViaDFS(MGraph g)
{
Vertex v;
for (v = 0; v < g->nv; v++)
{
if (!visited[v])
{
printf("{ ");
dfs(g, v);
printf("}\n");
}
}
}
void bfs(MGraph g, Vertex s)
{
Vertex v, w;
Queue q = createQueue(g->nv);
printf("%d ", s);
visited[s] = true;
addQ(q, s);
while (!isEmpty(q))
{
v = delQ(q);
for (w = 0; w < g->nv; w++)
{
if (!visited[w] && isEdge(g, v, w))
{
printf("%d ", w);
visited[w] = true;
addQ(q, w);
}
}
}
free(q->data);
free(q);
}
void listComponentsViaBFS(MGraph g)
{
Vertex v;
for (v = 0; v < g->nv; v++)
{
if (!visited[v])
{
printf("{ ");
bfs(g, v);
printf("}\n");
}
}
}
Queue createQueue(ELEMENT_TYPE size)
{
Queue q = (Queue)malloc(sizeof(struct _Queue));
q->data = (ELEMENT_TYPE *)malloc(size * sizeof(ELEMENT_TYPE));
q->front = q->rear = 0;
q->size = QUEUE_SIZE;
return q;
}
bool isFull(Queue q)
{
return (q->rear + 1) % q->size == q->front;
}
bool isEmpty(Queue q)
{
return q->front == q->rear;
}
bool addQ(Queue q, ELEMENT_TYPE x)
{
if (isFull(q))
{
printf("Full.\n");
return false;
}
else
{
q->rear = (q->rear + 1) % q->size;
q->data[q->rear] = x;
return true;
}
}
ELEMENT_TYPE delQ(Queue q)
{
if (isEmpty(q))
{
printf("Empty.\n");
return ERROR;
}
else
{
q->front = (q->front + 1) % q->size;
return q->data[q->front];
}
}

- 1
- 2
- 3
- 4
- 5
- 6
- 7
- 8
- 9
- 10
- 11
- 12
- 13
- 14
- 15
- 16
- 17
- 18
- 19
- 20
- 21
- 22
- 23
- 24
- 25
- 26
- 27
- 28
- 29
- 30
- 31
- 32
- 33
- 34
- 35
- 36
- 37
- 38
- 39
- 40
- 41
- 42
- 43
- 44
- 45
- 46
- 47
- 48
- 49
- 50
- 51
- 52
- 53
- 54
- 55
- 56
- 57
- 58
- 59
- 60
- 61
- 62
- 63
- 64
- 65
- 66
- 67
- 68
- 69
- 70
- 71
- 72
- 73
- 74
- 75
- 76
- 77
- 78
- 79
- 80
- 81
- 82
- 83
- 84
- 85
- 86
- 87
- 88
- 89
- 90
- 91
- 92
- 93
- 94
- 95
- 96
- 97
- 98
- 99
- 100
- 101
- 102
- 103
- 104
- 105
- 106
- 107
- 108
- 109
- 110
- 111
- 112
- 113
- 114
- 115
- 116
- 117
- 118
- 119
- 120
- 121
- 122
- 123
- 124
- 125
- 126
- 127
- 128
- 129
- 130
- 131
- 132
- 133
- 134
- 135
- 136
- 137
- 138
- 139
- 140
- 141
- 142
- 143
- 144
- 145
- 146
- 147
- 148
- 149
- 150
- 151
- 152
- 153
- 154
- 155
- 156
- 157
- 158
- 159
- 160
- 161
- 162
- 163
- 164
- 165
- 166
- 167
- 168
- 169
- 170
- 171
- 172
- 173
- 174
- 175
- 176
- 177
- 178
- 179
- 180
- 181
- 182
- 183
- 184
- 185
- 186
- 187
- 188
- 189
- 190
- 191
- 192
- 193
- 194
- 195
- 196
- 197
- 198
- 199
- 200
- 201
- 202
- 203
- 204
- 205
- 206
- 207
- 208
- 209
- 210
- 211
- 212
- 213
- 214
- 215
- 216
- 217
- 218
- 219
- 220
- 221
- 222
- 223
- 224
- 225
- 226
- 227
- 228
- 229
- 230
- 231
- 232
- 233
- 234
- 235
- 236
- 237
- 238
- 239
- 240
- 241
- 242
- 243
- 244
- 245
- 246
- 247
- 248
- 249
- 250
- 251
- 252
- 253
- 254
- 255
- 256
- 257
- 258
- 259
- 260
- 261
- 262
- 263
- 264
- 265
- 266
- 267
- 268
- 269
- 270
- 271
- 272
- 273
执行结果

小结
基础的对图的两种方式的遍历,需要熟练掌握。