• 服务器百万并发的原理与实现


    什么是百万并发?

    指的是服务器接收百万个连接或数据会在同一时刻接收到,也就是同时能看到

    百万个连接或数据。

    在了解服务器百万并发的同时,我们先来看看我们的百万并发服务器的结构图。

    主体是以reactor为核心,链表方式存储事件以及事件对应的属性

    服务端

    1. #include
    2. #include
    3. #include
    4. #include
    5. #include
    6. #include
    7. #include
    8. #include
    9. #include
    10. #include
    11. #include
    12. #include
    13. #include
    14. #define BUFFER_LENGTH 1024
    15. #define MAX_EPOLL_EVENTS 1024
    16. #define RESOURCE_LENGTH 1024
    17. #define SERVER_PORT 8888
    18. #define PORT_COUNT 1
    19. typedef int NCALLBACK(int ,int, void*);
    20. #define HTTP_METHOD_GET 0
    21. #define HTTP_METHOD_POST 1
    22. struct ntyevent {
    23. int fd;
    24. int events;
    25. void *arg;
    26. int (*callback)(int fd, int events, void *arg);
    27. int status;
    28. char buffer[BUFFER_LENGTH];
    29. char wbuffer[BUFFER_LENGTH];
    30. int length;
    31. int wlength;
    32. //long last_active;
    33. // http reqeust
    34. int method;
    35. char resource[RESOURCE_LENGTH];
    36. };
    37. struct eventblock {
    38. struct eventblock *next;
    39. struct ntyevent *events;
    40. };
    41. struct ntyreactor {
    42. int epfd;
    43. int blkcnt;
    44. struct eventblock *evblks;
    45. };
    46. int recv_cb(int fd, int events, void *arg);
    47. int send_cb(int fd, int events, void *arg);
    48. struct ntyevent *ntyreactor_idx(struct ntyreactor *reactor, int sockfd);
    49. void nty_event_set(struct ntyevent *ev, int fd, NCALLBACK callback, void *arg) {
    50. ev->fd = fd;
    51. ev->callback = callback;
    52. ev->events = 0;
    53. ev->arg = arg;
    54. //ev->last_active = time(NULL);
    55. return ;
    56. }
    57. int nty_event_add(int epfd, int events, struct ntyevent *ev) {
    58. struct epoll_event ep_ev = {0, {0}};
    59. ep_ev.data.ptr = ev;
    60. ep_ev.events = ev->events = events;
    61. int op;
    62. if (ev->status == 1) {
    63. op = EPOLL_CTL_MOD;
    64. } else {
    65. op = EPOLL_CTL_ADD;
    66. ev->status = 1;
    67. }
    68. if (epoll_ctl(epfd, op, ev->fd, &ep_ev) < 0) {
    69. printf("event add failed [fd=%d], events[%d]\n", ev->fd, events);
    70. return -1;
    71. }
    72. return 0;
    73. }
    74. int nty_event_del(int epfd, struct ntyevent *ev)
    75. {
    76. struct epoll_event ep_ev = {0, {0}};
    77. if (ev->status != 1) {
    78. return -1;
    79. }
    80. ep_ev.data.ptr = ev;
    81. ev->status = 0;
    82. epoll_ctl(epfd, EPOLL_CTL_DEL, ev->fd, &ep_ev);
    83. return 0;
    84. }
    85. // request
    86. // location /0voice/king/index.html HTTP/1.1
    87. //
    88. int readline(char* allbuf,int idx,char* linebuf) {
    89. int len = strlen(allbuf);
    90. for (;idx < len; ++idx) {
    91. if(allbuf[idx]=='\r' && allbuf[idx+1]=='\n')
    92. return idx+2;
    93. else
    94. *(linebuf++) = allbuf[idx];
    95. }
    96. return -1;
    97. }
    98. int nty_http_request(struct ntyevent *ev) {
    99. char linebuffer[1024] = {0};
    100. int idx = readline(ev->buffer, 0, linebuffer);
    101. if (strstr(linebuffer, "GET")) {
    102. ev->method = HTTP_METHOD_GET; //
    103. int i = 0;
    104. while(linebuffer[sizeof("GET ") + i] != ' ') i ++;
    105. linebuffer[sizeof("GET ") + i] = '\0';
    106. sprintf(ev->resource, "%s/%s", HTTP_WEB_ROOT, linebuffer+sizeof("GET "));
    107. //printf("resource: %s\n", ev->resource); //
    108. } else if (strstr(linebuffer, "POST")) {
    109. ev->method = HTTP_METHOD_POST;
    110. }
    111. }
    112. int nty_http_response_get_method(struct ntyevent *ev) {
    113. //int filed = open()
    114. #if 0
    115. int len = sprintf(ev->wbuffer,
    116. "HTTP/1.1 200 OK\r\n"
    117. "Accept-Ranges: bytes\r\n"
    118. "Content-Length: 78\r\n"
    119. "Content-Type: text/html\r\n"
    120. "Date: Sat, 06 Aug 2022 13:16:46 GMT\r\n\r\n"
    121. "0voice.king

      King

      "
      );
    122. ev->wlength = len;
    123. #else
    124. int len;
    125. int filefd = open(ev->resource, O_RDONLY);
    126. if (filefd == -1) {
    127. len = sprintf(ev->wbuffer,
    128. "HTTP/1.1 200 OK\r\n"
    129. "Accept-Ranges: bytes\r\n"
    130. "Content-Length: 78\r\n"
    131. "Content-Type: text/html\r\n"
    132. "Date: Sat, 06 Aug 2022 13:16:46 GMT\r\n\r\n"
    133. "0voice.king

      King

      "
      );
    134. ev->wlength = len;
    135. } else {
    136. struct stat stat_buf;
    137. fstat(filefd, &stat_buf);
    138. close(filefd);
    139. #if 1
    140. len = sprintf(ev->wbuffer,
    141. "HTTP/1.1 200 OK\r\n"
    142. "Accept-Ranges: bytes\r\n"
    143. "Content-Length: %ld\r\n"
    144. "Content-Type: text/html\r\n"
    145. "Date: Sat, 06 Aug 2022 13:16:46 GMT\r\n\r\n", stat_buf.st_size);
    146. #else
    147. len = sprintf(ev->wbuffer,
    148. "HTTP/1.1 200 OK\r\n"
    149. "Accept-Ranges: bytes\r\n"
    150. "Content-Length: %ld\r\n"
    151. "Content-Type: image/png\r\n"
    152. "Date: Sat, 06 Aug 2022 13:16:46 GMT\r\n\r\n", stat_buf.st_size);
    153. #endif
    154. ev->wlength = len;
    155. }
    156. #endif
    157. return len;
    158. }
    159. int nty_http_response(struct ntyevent *ev) {
    160. // ev->method, ev->resouces
    161. if (ev->method == HTTP_METHOD_GET) {
    162. return nty_http_response_get_method(ev);
    163. } else if (ev->method == HTTP_METHOD_POST) {
    164. }
    165. }
    166. // connection
    167. // sock_item --> fd, rbuffer, wbuffer, clientaddr
    168. int recv_cb(int fd, int events, void *arg) {
    169. struct ntyreactor *reactor = (struct ntyreactor*)arg;
    170. struct ntyevent *ev = ntyreactor_idx(reactor, fd);
    171. if (ev == NULL) return -1;
    172. //
    173. int len = recv(fd, ev->buffer, BUFFER_LENGTH, 0);
    174. nty_event_del(reactor->epfd, ev);
    175. if (len > 0) {
    176. ev->length = len;
    177. ev->buffer[len] = '\0';
    178. //printf("recv [%d]:%s\n", fd, ev->buffer);
    179. nty_http_request(ev); // parser http hdr
    180. nty_event_set(ev, fd, send_cb, reactor);
    181. nty_event_add(reactor->epfd, EPOLLOUT, ev);
    182. } else if (len == 0) {
    183. nty_event_del(reactor->epfd, ev);
    184. //printf("recv_cb --> disconnect\n");
    185. close(ev->fd);
    186. } else {
    187. if (errno == EAGAIN && errno == EWOULDBLOCK) { //
    188. } else if (errno == ECONNRESET){
    189. nty_event_del(reactor->epfd, ev);
    190. close(ev->fd);
    191. }
    192. //printf("recv[fd=%d] error[%d]:%s\n", fd, errno, strerror(errno));
    193. }
    194. return len;
    195. }
    196. int send_cb(int fd, int events, void *arg) {
    197. struct ntyreactor *reactor = (struct ntyreactor*)arg;
    198. struct ntyevent *ev = ntyreactor_idx(reactor, fd);
    199. if (ev == NULL) return -1;
    200. nty_http_response(ev); //encode
    201. int len = send(fd, ev->wbuffer, ev->wlength, 0);
    202. if (len > 0) {
    203. //printf("resource: %s\n", ev->resource);
    204. int filefd = open(ev->resource, O_RDONLY);
    205. //if (filefd < 0) return -1;
    206. struct stat stat_buf;
    207. fstat(filefd, &stat_buf);
    208. int flag = fcntl(fd, F_GETFL, 0);
    209. flag &= ~O_NONBLOCK;
    210. fcntl(fd, F_SETFL, flag);
    211. int ret = sendfile(fd, filefd, NULL, stat_buf.st_size);
    212. if (ret == -1) {
    213. printf("sendfile: errno: %d\n", errno);
    214. }
    215. flag |= O_NONBLOCK;
    216. fcntl(fd, F_SETFL, flag);
    217. close(filefd);
    218. send(fd, "\r\n", 2, 0);
    219. nty_event_del(reactor->epfd, ev);
    220. nty_event_set(ev, fd, recv_cb, reactor);
    221. nty_event_add(reactor->epfd, EPOLLIN, ev);
    222. } else {
    223. nty_event_del(reactor->epfd, ev);
    224. close(ev->fd);
    225. //printf("send[fd=%d] error %s\n", fd, strerror(errno));
    226. }
    227. return len;
    228. }
    229. int curfds = 0;
    230. #define TIME_SUB_MS(tv1, tv2) ((tv1.tv_sec - tv2.tv_sec) * 1000 + (tv1.tv_usec - tv2.tv_usec) / 1000)
    231. struct timeval tv_begin;
    232. int accept_cb(int fd, int events, void *arg) {
    233. struct ntyreactor *reactor = (struct ntyreactor*)arg;
    234. if (reactor == NULL) return -1;
    235. struct sockaddr_in client_addr;
    236. socklen_t len = sizeof(client_addr);
    237. int clientfd;
    238. if ((clientfd = accept(fd, (struct sockaddr*)&client_addr, &len)) == -1) {
    239. if (errno != EAGAIN && errno != EINTR) {
    240. }
    241. printf("accept: %s\n", strerror(errno));
    242. return -1;
    243. }
    244. int flag = 0;
    245. if ((flag = fcntl(clientfd, F_SETFL, O_NONBLOCK)) < 0) {
    246. printf("%s: fcntl nonblocking failed, %d\n", __func__, MAX_EPOLL_EVENTS);
    247. return -1;
    248. }
    249. struct ntyevent *event = ntyreactor_idx(reactor, clientfd);
    250. if (event == NULL) return -1;
    251. nty_event_set(event, clientfd, recv_cb, reactor);
    252. nty_event_add(reactor->epfd, EPOLLIN, event);
    253. if (curfds++ % 1000 == 999) {
    254. struct timeval tv_cur;
    255. memcpy(&tv_cur, &tv_begin, sizeof(struct timeval));
    256. gettimeofday(&tv_begin, NULL);
    257. int time_used = TIME_SUB_MS(tv_begin, tv_cur);
    258. printf("connections: %d, sockfd:%d, time_used:%d\n", curfds, clientfd, time_used);
    259. }
    260. //printf("new connect [%s:%d], pos[%d]\n",
    261. // inet_ntoa(client_addr.sin_addr), ntohs(client_addr.sin_port), clientfd);
    262. return 0;
    263. }
    264. int init_sock(short port) {
    265. int fd = socket(AF_INET, SOCK_STREAM, 0);
    266. fcntl(fd, F_SETFL, O_NONBLOCK);
    267. struct sockaddr_in server_addr;
    268. memset(&server_addr, 0, sizeof(server_addr));
    269. server_addr.sin_family = AF_INET;
    270. server_addr.sin_addr.s_addr = htonl(INADDR_ANY);
    271. server_addr.sin_port = htons(port);
    272. if (bind(fd, (struct sockaddr*)&addr, sizeof(struct sockaddr_in)) < 0) {
    273. perror("bind");
    274. return 2;
    275. }
    276. if (listen(fd, 20) < 0) {
    277. printf("listen failed : %s\n", strerror(errno));
    278. return -1;
    279. }
    280. printf("listen server port : %d\n", port);
    281. gettimeofday(&tv_begin, NULL);
    282. return fd;
    283. }
    284. int ntyreactor_alloc(struct ntyreactor *reactor) {
    285. if (reactor == NULL) return -1;
    286. if (reactor->evblks == NULL) return -1;
    287. struct eventblock *blk = reactor->evblks;
    288. while (blk->next != NULL) {
    289. blk = blk->next;
    290. }
    291. struct ntyevent* evs = (struct ntyevent*)malloc((MAX_EPOLL_EVENTS) * sizeof(struct ntyevent));
    292. if (evs == NULL) {
    293. printf("ntyreactor_alloc ntyevent failed\n");
    294. return -2;
    295. }
    296. memset(evs, 0, (MAX_EPOLL_EVENTS) * sizeof(struct ntyevent));
    297. struct eventblock *block = malloc(sizeof(struct eventblock));
    298. if (block == NULL) {
    299. printf("ntyreactor_alloc eventblock failed\n");
    300. return -3;
    301. }
    302. block->events = evs;
    303. block->next = NULL;
    304. blk->next = block;
    305. reactor->blkcnt ++;
    306. return 0;
    307. }
    308. struct ntyevent *ntyreactor_idx(struct ntyreactor *reactor, int sockfd) {
    309. if (reactor == NULL) return NULL;
    310. if (reactor->evblks == NULL) return NULL;
    311. int blkidx = sockfd / MAX_EPOLL_EVENTS;
    312. while (blkidx >= reactor->blkcnt) {
    313. ntyreactor_alloc(reactor);
    314. }
    315. int i = 0;
    316. struct eventblock *blk = reactor->evblks;
    317. while (i++ != blkidx && blk != NULL) {
    318. blk = blk->next;
    319. }
    320. return &blk->events[sockfd % MAX_EPOLL_EVENTS];
    321. }
    322. int ntyreactor_init(struct ntyreactor *reactor) {
    323. if (reactor == NULL) return -1;
    324. memset(reactor, 0, sizeof(struct ntyreactor));
    325. reactor->epfd = epoll_create(1);
    326. if (reactor->epfd <= 0) {
    327. printf("create epfd in %s err %s\n", __func__, strerror(errno));
    328. return -2;
    329. }
    330. struct ntyevent* evs = (struct ntyevent*)malloc((MAX_EPOLL_EVENTS) * sizeof(struct ntyevent));
    331. if (evs == NULL) {
    332. printf("create epfd in %s err %s\n", __func__, strerror(errno));
    333. close(reactor->epfd);
    334. return -3;
    335. }
    336. memset(evs, 0, (MAX_EPOLL_EVENTS) * sizeof(struct ntyevent));
    337. struct eventblock *block = malloc(sizeof(struct eventblock));
    338. if (block == NULL) {
    339. free(evs);
    340. close(reactor->epfd);
    341. return -3;
    342. }
    343. block->events = evs;
    344. block->next = NULL;
    345. reactor->evblks = block;
    346. reactor->blkcnt = 1;
    347. return 0;
    348. }
    349. int ntyreactor_destory(struct ntyreactor *reactor) {
    350. close(reactor->epfd);
    351. struct eventblock *blk = reactor->evblks;
    352. struct eventblock *blk_next;
    353. while (blk != NULL) {
    354. blk_next = blk->next;
    355. free(blk->events);
    356. free(blk);
    357. blk = blk_next;
    358. }
    359. return 0;
    360. }
    361. int ntyreactor_addlistener(struct ntyreactor *reactor, int sockfd, NCALLBACK *acceptor) {
    362. if (reactor == NULL) return -1;
    363. if (reactor->evblks == NULL) return -1;
    364. struct ntyevent *event = ntyreactor_idx(reactor, sockfd);
    365. if (event == NULL) return -1;
    366. nty_event_set(event, sockfd, acceptor, reactor);
    367. nty_event_add(reactor->epfd, EPOLLIN, event);
    368. return 0;
    369. }
    370. int ntyreactor_run(struct ntyreactor *reactor) {
    371. if (reactor == NULL) return -1;
    372. if (reactor->epfd < 0) return -1;
    373. if (reactor->evblks == NULL) return -1;
    374. struct epoll_event events[MAX_EPOLL_EVENTS+1];
    375. int checkpos = 0, i;
    376. while (1) {
    377. int nready = epoll_wait(reactor->epfd, events, MAX_EPOLL_EVENTS, 1000);
    378. if (nready < 0) {
    379. printf("epoll_wait error, exit\n");
    380. continue;
    381. }
    382. for (i = 0;i < nready;i ++) {
    383. struct ntyevent *ev = (struct ntyevent*)events[i].data.ptr;
    384. if ((events[i].events & EPOLLIN) && (ev->events & EPOLLIN)) {
    385. ev->callback(ev->fd, events[i].events, ev->arg);
    386. }
    387. if ((events[i].events & EPOLLOUT) && (ev->events & EPOLLOUT)) {
    388. ev->callback(ev->fd, events[i].events, ev->arg);
    389. }
    390. }
    391. }
    392. }
    393. int main(int argc, char *argv[]) {
    394. struct ntyreactor *reactor = (struct ntyreactor*)malloc(sizeof(struct ntyreactor));
    395. ntyreactor_init(reactor);
    396. unsigned short port = SERVER_PORT;
    397. if (argc == 2) {
    398. port = atoi(argv[1]);
    399. }
    400. int i = 0;
    401. int sockfds[PORT_COUNT] = {0};
    402. for (i = 0;i < PORT_COUNT;i ++) {
    403. sockfds[i] = init_sock(port+i);
    404. ntyreactor_addlistener(reactor, sockfds[i], accept_cb);
    405. }
    406. ntyreactor_run(reactor);
    407. ntyreactor_destory(reactor);
    408. for (i = 0;i < PORT_COUNT;i ++) {
    409. close(sockfds[i]);
    410. }
    411. free(reactor);
    412. return 0;
    413. }

    客户端(向服务器一直发请求)

    1. #include
    2. #include
    3. #include
    4. #include
    5. #include
    6. #include
    7. #include
    8. #include
    9. #include
    10. #include
    11. #include
    12. #define MAX_BUFFER 128
    13. #define MAX_EPOLLSIZE (384*1024)
    14. #define MAX_PORT 100
    15. #define TIME_SUB_MS(tv1, tv2) ((tv1.tv_sec - tv2.tv_sec) * 1000 + (tv1.tv_usec - tv2.tv_usec) / 1000)
    16. int isContinue = 0;
    17. static int ntySetNonblock(int fd) {
    18. int flags;
    19. flags = fcntl(fd, F_GETFL, 0);
    20. if (flags < 0) return flags;
    21. flags |= O_NONBLOCK;
    22. if (fcntl(fd, F_SETFL, flags) < 0) return -1;
    23. return 0;
    24. }
    25. static int ntySetReUseAddr(int fd) {
    26. int reuse = 1;
    27. return setsockopt(fd, SOL_SOCKET, SO_REUSEADDR, (char *)&reuse, sizeof(reuse));
    28. }
    29. int main(int argc, char **argv) {
    30. if (argc <= 2) {
    31. printf("Usage: %s ip port\n", argv[0]);
    32. exit(0);
    33. }
    34. const char *ip = argv[1];
    35. int port = atoi(argv[2]);
    36. int connections = 0;
    37. char buffer[128] = {0};
    38. int i = 0, index = 0;
    39. struct epoll_event events[MAX_EPOLLSIZE];
    40. int epoll_fd = epoll_create(MAX_EPOLLSIZE);
    41. strcpy(buffer, " Data From MulClient\n");
    42. struct sockaddr_in addr;
    43. memset(&addr, 0, sizeof(struct sockaddr_in));
    44. addr.sin_family = AF_INET;
    45. addr.sin_addr.s_addr = inet_addr(ip);
    46. struct timeval tv_begin;
    47. gettimeofday(&tv_begin, NULL);
    48. while (1) {
    49. if (++index >= MAX_PORT) index = 0;
    50. struct epoll_event ev;
    51. int sockfd = 0;
    52. if (connections < 340000 && !isContinue) {
    53. sockfd = socket(AF_INET, SOCK_STREAM, 0);
    54. if (sockfd == -1) {
    55. perror("socket");
    56. goto err;
    57. }
    58. //ntySetReUseAddr(sockfd);
    59. addr.sin_port = htons(port+index);
    60. if (connect(sockfd, (struct sockaddr*)&addr, sizeof(struct sockaddr_in)) < 0) {
    61. perror("connect");
    62. goto err;
    63. }
    64. ntySetNonblock(sockfd);
    65. ntySetReUseAddr(sockfd);
    66. sprintf(buffer, "Hello Server: client --> %d\n", connections);
    67. send(sockfd, buffer, strlen(buffer), 0);
    68. ev.data.fd = sockfd;
    69. ev.events = EPOLLIN | EPOLLOUT;
    70. epoll_ctl(epoll_fd, EPOLL_CTL_ADD, sockfd, &ev);
    71. connections ++;
    72. }
    73. //connections ++;
    74. if (connections % 1000 == 999 || connections >= 340000) {
    75. struct timeval tv_cur;
    76. memcpy(&tv_cur, &tv_begin, sizeof(struct timeval));
    77. gettimeofday(&tv_begin, NULL);
    78. int time_used = TIME_SUB_MS(tv_begin, tv_cur);
    79. printf("connections: %d, sockfd:%d, time_used:%d\n", connections, sockfd, time_used);
    80. int nfds = epoll_wait(epoll_fd, events, connections, 100);
    81. for (i = 0;i < nfds;i ++) {
    82. int clientfd = events[i].data.fd;
    83. if (events[i].events & EPOLLOUT) {
    84. sprintf(buffer, "data from %d\n", clientfd);
    85. send(sockfd, buffer, strlen(buffer), 0);
    86. } else if (events[i].events & EPOLLIN) {
    87. char rBuffer[MAX_BUFFER] = {0};
    88. ssize_t length = recv(sockfd, rBuffer, MAX_BUFFER, 0);
    89. if (length > 0) {
    90. printf(" RecvBuffer:%s\n", rBuffer);
    91. if (!strcmp(rBuffer, "quit")) {
    92. isContinue = 0;
    93. }
    94. } else if (length == 0) {
    95. printf(" Disconnect clientfd:%d\n", clientfd);
    96. connections --;
    97. close(clientfd);
    98. } else {
    99. if (errno == EINTR) continue;
    100. printf(" Error clientfd:%d, errno:%d\n", clientfd, errno);
    101. close(clientfd);
    102. }
    103. } else {
    104. printf(" clientfd:%d, errno:%d\n", clientfd, errno);
    105. close(clientfd);
    106. }
    107. }
    108. }
    109. usleep(500);
    110. }
    111. return 0;
    112. err:
    113. printf("error : %s\n", strerror(errno));
    114. return 0;
    115. }

    实现效果跟服务器的性能和台数也有关系,我只有一台服务器并且内存很小只有1G,所以到不了百万并发,多几台服务器就可以实现百万并发了

    还有一个细节就是在测试百万并发的时候,尽量减少IO操作提升百万并发效率

  • 相关阅读:
    通用收藏管理器Koillection
    Z-DArg-GR-pNA,113711-77-6
    我为什么选择这样一份经常出差的工作
    JS合并2个远程pdf
    基础gdb操作【Linux】
    karmada介绍和分析
    C++ const与符号表
    离散化算法
    RNA-seq 详细教程:实验设计(2)
    【Mac开发环境搭建】JDK安装、多JDK安装与切换
  • 原文地址:https://blog.csdn.net/txh1873749380/article/details/134030657