• c++新年好和通信路线(acwing)


    第一个问题在于枚举

    先看题目:

    重庆城里有 n个车站,m 条 双向 公路连接其中的某些车站。

    每两个车站最多用一条公路连接,从任何一个车站出发都可以经过一条或者多条公路到达其他车站,但不同的路径需要花费的时间可能不同。

    在一条路径上花费的时间等于路径上所有公路需要的时间之和。

    佳佳的家在车站 11,他有五个亲戚,分别住在车站 a,b,c,d,e。

    过年了,他需要从自己的家出发,拜访每个亲戚(顺序任意),给他们送去节日的祝福。

    怎样走,才需要最少的时间?

    输入格式

    第一行:包含两个整数 n,m,分别表示车站数目和公路数目。

    第二行:包含五个整数 a,b,c,d,e,分别表示五个亲戚所在车站编号。

    以下 m 行,每行三个整数 x,y,t,表示公路连接的两个车站编号和时间。

    输出格式

    输出仅一行,包含一个整数 T,表示最少的总时间。

    数据范围

    1≤n≤50000,
    1≤m≤10^5,
    1 1≤x,y≤n,
    1≤t≤100

    输入样例:
    1. 6 6
    2. 2 3 4 5 6
    3. 1 2 8
    4. 2 3 3
    5. 3 4 4
    6. 4 5 5
    7. 5 6 2
    8. 1 6 7

    输出样例:

    21

    代码如下

    1. #include
    2. #include
    3. #include
    4. #include
    5. using namespace std;
    6. typedef pair<int, int> PII;
    7. const int N = 5e4 + 10, M = 2e5 + 10, INF = 0x3f3f3f3f;
    8. int n, m;
    9. int h[N], w[M], e[M], ne[M], idx;
    10. int source[N];
    11. int dist[6][N];
    12. bool st[N];
    13. void add(int a, int b, int c)
    14. {
    15. e[idx] = b, w[idx] = c, ne[idx] = h[a], h[a] = idx ++;
    16. }
    17. void dijkstra(int start, int dist[])
    18. {
    19. memset(dist, 0x3f, N * 4);//因为这边传过来的数组,实际是指针,所以是N*4
    20. memset(st, 0, sizeof st);
    21. dist[start] = 0;
    22. priority_queue, greater> heap;
    23. heap.push({0, start});
    24. while(heap.size())
    25. {
    26. auto t = heap.top();
    27. heap.pop();
    28. int ver = t.second;
    29. if(st[ver]) continue;
    30. st[ver] = true;
    31. for(int i = h[ver]; i != -1; i = ne[i])
    32. {
    33. int j = e[i];
    34. if(dist[j] > dist[ver] + w[i])
    35. {
    36. dist[j] = dist[ver] + w[i];
    37. heap.push({dist[j], j});
    38. }
    39. }
    40. }
    41. }
    42. // 枚举每种拜访次序,求出最小距离
    43. // 拜访了u个人,自己是第1个人;当前起点是source[start],当前走过的距离是distance
    44. int dfs(int u, int start, int distance)
    45. {
    46. if(u > 5) return distance;//走完了,返回
    47. // res存距离最短的分支
    48. int res = INF;
    49. for(int i = 1; i < 6; i ++)
    50. {
    51. if(!st[i])
    52. {
    53. int next = source[i];//走亲戚
    54. st[i] = true;
    55. res = min(res, dfs(u + 1, i, distance + dist[start][next]));
    56. st[i] = false;
    57. }
    58. }
    59. return res;
    60. }
    61. int main()
    62. {
    63. cin >> n >> m;
    64. memset(h, -1, sizeof h);
    65. source[0] = 1;//第一个结点为1
    66. for(int i = 1;i <= 5; i ++) cin >> source[i];//输入剩余五个亲戚的站台号
    67. while(m --)
    68. {
    69. int a, b, c;
    70. scanf("%d%d%d", &a, &b, &c);
    71. add(a, b, c), add(b, a, c);
    72. }
    73. for(int i = 0; i < 6; i ++) dijkstra(source[i], dist[i]);//每一个节点都跑一次最短路
    74. memset(st, 0, sizeof st);//重置st数组,因为要再次使用
    75. cout << dfs(1, 0, 0) << endl;//输出答案
    76. return 0;
    77. }

    第二个题目:

    博主用的分层图做法

    先看题目:

    在郊区有 N 座通信基站,P条 双向 电缆,第 i 条电缆连接基站 Ai 和 Bi。

    特别地,11 号基站是通信公司的总站,N 号基站位于一座农场中。

    现在,农场主希望对通信线路进行升级,其中升级第 i 条电缆需要花费 Li。

    电话公司正在举行优惠活动

    农产主可以指定一条从 11 号基站到 N 号基站的路径,并指定路径上不超过 K 条电缆,由电话公司免费提供升级服务。

    农场主只需要支付在该路径上剩余的电缆中,升级价格最贵的那条电缆的花费即可。

    求至少用多少钱可以完成升级。

    输入格式

    第 11 行:三个整数 N,P,K。

    第 2..P+1 行:第 i+1 行包含三个整数 Ai,Bi,Li。

    输出格式

    包含一个整数表示最少花费。

    若 11 号基站与 N 号基站之间不存在路径,则输出 −1−1。

    数据范围

    0≤K 1≤P≤10000,
    1≤Li≤1000000

    代码如下:

    1. #include
    2. #include
    3. #include
    4. #include
    5. using namespace std;
    6. typedef pair<int, int> PII;
    7. //因为建议k层分层图,所以数据是这样的
    8. const int N = 1e6 + 10, M = 2e7 + 10, INF = 0x3f3f3f3f;
    9. int n, m, k;
    10. int h[N], w[M], e[M], ne[M], idx;
    11. int dist[N];
    12. bool st[N];
    13. void add(int a, int b, int c)
    14. {
    15. e[idx] = b, w[idx] = c, ne[idx] = h[a], h[a] = idx ++;
    16. }
    17. void dijkstra()
    18. {
    19. memset(dist, 0x3f, sizeof dist);
    20. dist[1] = 0;
    21. priority_queue, greater> heap;
    22. heap.push({0, 1});
    23. while(heap.size())
    24. {
    25. auto t = heap.top();
    26. heap.pop();
    27. int ver = t.second, distance = t.first;
    28. if(st[ver]) continue;
    29. st[ver] = true;
    30. for(int i = h[ver]; ~ i; i = ne[i])
    31. {
    32. int j = e[i], x = max(dist[ver], w[i]);//这里是比较价格最大的那个
    33. if(dist[j] > x)
    34. {
    35. dist[j] = x;
    36. heap.push({dist[j], j});
    37. }
    38. }
    39. }
    40. }
    41. int main()
    42. {
    43. cin >> n >> m >> k;
    44. memset(h, -1, sizeof h);
    45. while(m --)
    46. {
    47. int a, b, c;
    48. scanf("%d%d%d",&a, &b, &c);
    49. add(a, b, c), add(b, a, c);
    50. for(int j = 1; j <= k; j ++)//k次免费,建议k层分层图
    51. {
    52. add(j * n + a, j * n + b, c);
    53. add(j * n + b, j * n + a, c);
    54. add((j - 1) * n + a, j * n + b, 0);
    55. add((j - 1) * n + b, j * n + a, 0);
    56. }
    57. }
    58. //给每层终点建一条边是为了防止出现用不到k次就出现最短路的情况
    59. for(int i = 1; i <= k; i ++) add(i * n, (i + 1) * n, 0);
    60. dijkstra();
    61. if(dist[(k + 1) * n] == INF) puts("-1");
    62. else cout <1) * n] << endl;
    63. return 0;
    64. }

    明白的小伙伴麻烦点个赞吧

  • 相关阅读:
    http头各字段含义
    SQLAlchemy使用教程
    Vue (十一) --------- 过渡与动画
    fiddler导出录制脚本并导出jmter脚本文件
    在找工作时的准备工作:结合现状,针对意向企业做好充分准备
    5 大核心能力+1 套全局防护策略,星环科技 Defensor 构建企业数据安全护城河
    uniapp 将流转化为视频并播放 微信小程序
    ASPX与ASP URL传递值问题
    【SpringCloud-学习笔记】Eureka注册中心
    [附源码]Python计算机毕业设计Django汽车租赁管理系统
  • 原文地址:https://blog.csdn.net/2301_76180325/article/details/134014626