设函数 f ( x ) f(x) f(x)在区间 ( a , b ) (a,b) (a,b)内具有连续导数,在曲线 y = f ( x ) y=f(x) y=f(x)上取固定点 M 0 ( x 0 , y 0 ) M_0(x_0,y_0) M0(x0,y0)作为度量弧长的基点,对曲线上任意点 M ( x , y ) M(x,y) M(x,y)为终点的有向弧段记为弧 M 0 M M_0M M0M,不妨将弧s记为 a ( s ) a(s) a(s);(a:arch)
相应的,可以把以点 M 0 M_0 M0为起点,以 M M M为终点的直线段称为曲线上的弦,记为 c ( M 0 M ) c(M_0M) c(M0M);(c:chord,表示曲线上的两点构成的线段,即弦)
有向弧段 a ( M 0 M ) a(M_0M) a(M0M)的值也常记为 a ( M 0 M ) a(M_0M) a(M0M)
设 x , x + Δ x x,x+\Delta{x} x,x+Δx为 ( a , b ) (a,b) (a,b)内两个邻近的点,它们在 y = f ( x ) y=f(x) y=f(x)上对应点为 M , M ′ M,M' M,M′
设对应于 x x x的增量为 Δ x \Delta{x} Δx,弧 s s s的增量为 Δ s \Delta{s} Δs= a ( M M ′ ) a(MM') a(MM′)
从而有
Δ
s
Δ
x
\frac{\Delta{s}}{\Delta{x}}
ΔxΔs=
a
(
M
M
′
)
Δ
x
\frac{a(MM')}{\Delta{x}}
Δxa(MM′)=
a
(
M
M
′
)
Δ
x
⋅
c
(
M
M
′
)
c
(
M
M
′
)
\frac{a(MM')}{\Delta{x}}\cdot{\frac{c(MM')}{c(MM')}}
Δxa(MM′)⋅c(MM′)c(MM′)=
a
(
M
M
′
)
c
(
M
M
′
)
c
(
M
M
′
)
Δ
x
\frac{a(MM')}{c(MM')}\frac{c(MM')}{\Delta{x}}
c(MM′)a(MM′)Δxc(MM′)(1)
为了便于演算,令
a
=
a
(
M
M
′
)
a=a(MM')
a=a(MM′),
c
=
c
(
M
M
′
)
c=c(MM')
c=c(MM′);则式(1)写作
Δ
s
Δ
x
\frac{\Delta{s}}{\Delta{x}}
ΔxΔs=
a
c
c
Δ
x
\frac{a}{c}\frac{c}{\Delta{x}}
caΔxc(2)
对(2)两边同时平方:
(
Δ
s
Δ
x
)
2
(\frac{\Delta{s}}{\Delta{x}})^{2}
(ΔxΔs)2=
(
a
c
c
Δ
x
)
2
(\frac{a}{c}\frac{c}{\Delta{x}})^2
(caΔxc)2=
(
a
c
)
2
c
2
(
Δ
x
)
2
(\frac{a}{c})^2\frac{c^2}{(\Delta{x})^2}
(ca)2(Δx)2c2(3)
(3-1)(4)当 Δ x → 0 \Delta{x}\to{0} Δx→0时,
对式(4)两边取极限,得:
d
s
d
x
\frac{\mathrm{d}s}{\mathrm{d}x}
dxds=
±
lim
Δ
x
→
0
(
a
c
)
2
lim
Δ
x
→
0
(
1
+
(
Δ
y
Δ
x
)
2
)
\pm\sqrt{{\lim\limits_{\Delta{x}\to{0}}{(\frac{a}{c})^2}}\lim\limits_{\Delta{x}\to{0}}(1+(\frac{\Delta{y}}{\Delta{x}})^2)}
±Δx→0lim(ca)2Δx→0lim(1+(ΔxΔy)2)=
±
1
+
y
′
2
\pm\sqrt{1+y'^2}
±1+y′2(5)
由于
s
=
s
(
x
)
s=s(x)
s=s(x)是单调增加的函数,从而其导数
s
′
=
d
s
d
x
>
0
s'=\frac{\mathrm{d}s}{\mathrm{d}x}>0
s′=dxds>0,从而
d
s
{\mathrm{d}s}
ds=
1
+
y
′
2
d
x
\sqrt{1+y'^2}\mathrm{d}x
1+y′2dx(6)
式(6)就是弧微分公式
(2)(2-1)(3)(4)(5),是一个常数(圆的半径的导数)(1),
d
α
{\mathrm{d}\alpha}
dα=
y
′
′
1
+
y
′
2
d
x
\frac{y''}{1+y'^2}{\mathrm{d}x}
1+y′2y′′dx(2)(3)设曲线的参数方程为 x = ϕ ( t ) x=\phi(t) x=ϕ(t), y = ψ ( t ) y=\psi(t) y=ψ(t),则可以利用参数方程所确定的函数的求导法求出 y x ′ , y x ′ ′ y_{x}',y_{x}'' yx′,yx′′,代入式(3),得
K = ∣ ψ ′ ′ ( t ) ϕ ′ ( t ) − ψ ′ ( t ) ϕ ′ ′ ( t ) ϕ ′ 3 ( t ) ∣ / ( 1 + ψ ′ 2 ( t ) / ϕ ′ 2 ( t ) ) 3 2 = ∣ ψ ′ ′ ( t ) ϕ ′ ( t ) − ψ ′ ( t ) ϕ ′ ′ ( t ) ϕ ′ 3 ( t ) ∣ / ( ( ϕ ′ 2 ( t ) + ψ ′ 2 ( t ) ) 3 2 ( ( ϕ ′ 2 ( t ) ) 3 2 ) ) ) = ∣ ψ ′ ′ ( t ) ϕ ′ ( t ) − ψ ′ ( t ) ϕ ′ ′ ( t ) ( ϕ ′ 2 ( t ) + ψ ′ 2 ( t ) ) 3 2 ∣ K=|ψ″(t)ϕ′(t)−ψ′(t)ϕ″(t)ϕ′3(t)|/(1+ψ′2(t)/ϕ′2(t))32=|ψ″(t)ϕ′(t)−ψ′(t)ϕ″(t)ϕ′3(t)|/((ϕ′2(t)+ψ′2(t))32((ϕ′2(t))32)))=|ψ″(t)ϕ′(t)−ψ′(t)ϕ″(t)(ϕ′2(t)+ψ′2(t))32| K===∣ϕ′3(t)ψ′′(t)ϕ′(t)−ψ′(t)ϕ′′(t)∣/(1+ψ′2(t)/ϕ′2(t))23∣ϕ′3(t)ψ′′(t)ϕ′(t)−ψ′(t)ϕ′′(t)∣/(((ϕ′2(t))23)(ϕ′2(t)+ψ′2(t))23))∣(ϕ′2(t)+ψ′2(t))23ψ′′(t)ϕ′(t)−ψ′(t)ϕ′′(t)∣
K K K= ∣ ψ ′ ′ ( t ) ϕ ′ ( t ) − ψ ′ ( t ) ϕ ′ ′ ( t ) ∣ ( ϕ ′ 2 ( t ) + ψ ′ 2 ( t ) ) 3 2 \Large\frac{|\psi''(t)\phi'(t)-\psi'(t)\phi''(t)|}{(\phi'^2(t)+\psi'^2(t))^{\frac{3}{2}}} (ϕ′2(t)+ψ′2(t))23∣ψ′′(t)ϕ′(t)−ψ′(t)ϕ′′(t)∣