• 图像降噪相关论文-从传统方法到深度学习


    Filter

    · NLM [PDF]

    A non-local algorithm for image denoising (CVPR 05), Buades et al.

    Image denoising based on non-local means filter and its method noise thresholding (SIVP2013), B. Kumar

    · BM3D [PDF]

    o Image restoration by sparse 3D transform-domain collaborative filtering (SPIE Electronic Imaging 2008), Dabov et al.

    · PID [PDF]

    Progressive Image Denoising (TIP 2014), C. Knaus et al.

    Sparse Coding

    · KSVD [PDF]

    o Image Denoising Via Sparse and Redundant Representations Over Learned Dictionaries (TIP 2006), Elad et al.

    · LSSC [PDF]

    o Non-local Sparse Models for Image Restoration (ICCV 2009), Mairal et al.

    · NCSR [PDF]

    o Nonlocally Centralized Sparse Representation for Image Restoration (TIP 2012), Dong et al.

    · OCTOBOS [PDF]

    o Structured Overcomplete Sparsifying Transform Learning with Convergence Guarantees and Applications (IJCV 2015), Wen et al.

    · GSR [PDF]

    o Group-based Sparse Representation for Image Restoration (TIP 2014), Zhang et al.

    · TWSC [PDF]

    o A Trilateral Weighted Sparse Coding Scheme for Real-World Image Denoising (ECCV 2018), Xu et al.

    Effective Prior

    · EPLL [PDF]

    o From Learning Models of Natural Image Patches to Whole Image Restoration (ICCV2011), Zoran et al.

    · GHP [PDF]

    o Texture Enhanced Image Denoising via Gradient Histogram Preservation (CVPR2013), Zuo et al.

    · PGPD [PDF]

    o Patch Group Based Nonlocal Self-Similarity Prior Learning for Image Denoising (ICCV 2015), Xu et al.

    · PCLR [PDF]

    o External Patch Prior Guided Internal Clustering for Image Denoising (ICCV 2015), Chen et al.

    Low Rank

    · SAIST [PDF]

    o Nonlocal image restoration with bilateral variance estimation: a low-rank approach (TIP2013), Dong et al.

    · WNNM [PDF]

    o Weighted Nuclear Norm Minimization with Application to Image Denoising (CVPR2014), Gu et al.

    · Multi-channel WNNM [PDF]

    o Multi-channel Weighted Nuclear Norm Minimization for Real Color Image Denoising (ICCV 2017), Xu et al.

    Deep Learning

    · SF [PDF]

    o Shrinkage Fields for Effective Image Restoration (CVPR 2014), Schmidt et al.

    · TNRD [PDF]

    o Trainable nonlinear reaction diffusion: A flexible framework for fast and effective image restoration (TPAMI 2016), Chen et al.

    · RED [PDF]

    o Image Restoration Using Very Deep Convolutional Encoder-Decoder Networks with Symmetric Skip Connections (NIPS2016), Mao et al.

    · DnCNN [PDF]

    o Beyond a Gaussian Denoiser: Residual Learning of Deep CNN for Image Denoising (TIP2017), Zhang et al.

    · MemNet [PDF]

    o MemNet: A Persistent Memory Network for Image Restoration (ICCV2017), Tai et al.

    · WIN [PDF]

    o Learning Pixel-Distribution Prior with Wider Convolution for Image Denoising (Arxiv), Liu et al.

    · F-W Net [PDF]

    o L_p-Norm Constrained Coding With Frank-Wolfe Network (Arxiv), Sun et al.

    · NLCNN [PDF]

    o Non-Local Color Image Denoising with Convolutional Neural Networks (CVPR 2017), Lefkimmiatis.

    · Deep image prior [PDF]

    o Deep Image Prior (CVPR 2018), Ulyanov et al.

    · xUnit [PDF]

    o xUnit: Learning a Spatial Activation Function for Efficient Image Restoration (Arxiv), Kligvasser et al.

    · UDNet] [PDF]

    o Universal Denoising Networks : A Novel CNN Architecture for Image Denoising (CVPR 2018), Stamatios Lefkimmiatis.

    · Wavelet-CNN [PDF]

    o Multi-level Wavelet-CNN for Image Restoration (Arxiv), Liu et al.

    · FFDNet [PDF]

    o FFDNet: Toward a Fast and Flexible Solution for CNN-Based Image Denoising (TIP), Zhang et al.

    · FC-AIDE [PDF]

    o Fully Convolutional Pixel Adaptive Image Denoiser (Arxiv), Cha et al.

    · CBDNet [PDF]

    o Toward Convolutional Blind Denoising of Real Photographs (Arxiv), Guo et al.

    · Noise2Noise [PDF]

    o Noise2Noise: Learning Image Restoration without Clean Data (ICML 2018), Lehtinen et al.

    · Neighbor2Neighbor [PDF]

    o Neighbor2Neighbor: Self-Supervised Denoising from Single Noisy Images, Huang et al.

    · UDN [PDF]

    o Universal Denoising Networks- A Novel CNN Architecture for Image Denoising (CVPR 2018), Lefkimmiatis.

    · N3 [PDF]

    o Neural Nearest Neighbors Networks (NIPS 2018), Plotz et al.

    · NLRN [PDF]

    o Non-Local Recurrent Network for Image Restoration (NIPS 2018), Liu et al.

    · KPN [PDF]

    o Burst Denoising with Kernel Prediction Networks (CVPR 2018), Ben et al.

    · MKPN [PDF]

    o Multi-Kernel Prediction Networks for Denoising of Burst Images (ArXiv 2019), Marinc et al.

    · RFCN [PDF] [PDF]

    o Deep Burst Denoising (ArXiv 2017), Clement et al.

    o End-to-End Denoising of Dark Burst Images Using Recurrent Fully Convolutional Networks (ArXiv 2019), Zhao et al.

    · CNN-LSTM [PDF]

    o Image denoising and restoration with CNN-LSTM Encoder Decoder with Direct Attention (ArXiv 2018), Haque et al.

    · GRDN [PDF]

    o GRDN: Grouped Residual Dense Network for Real Image Denoising and GAN-based Real-world Noise Modeling (CVPR 2019), Kim et al.

    · Deformable KPN [PDF]

    o Learning Deformable Kernels for Image and Video Denoising (ArXiv 2019), Xu et al.

    · BayerUnify BayerAug [PDF]

    o Learning Raw Image Denoising With Bayer Pattern Unification and Bayer Preserving Augmentation (CVPR 2019), Liu et al.

    · RDU-UD [PDF]

    o A Deep Motion Deblurring Network Based on Per-Pixel Adaptive Kernels With Residual Down-Up and Up-Down Modules (CVPR 2019), Sim et al.

    · RIDNet [PDF]

    o Real Image Denoising with Feature Attention (ArXiv 2019), Anwar et al.

    · EDVR [PDF]

    o EDVR: Video Restoration With Enhanced Deformable Convolutional Networks (CVPR 2019), Wang et al.

    · DVDNet [PDF]

    o DVDnet: A Fast Network for Deep Video Denoising (ArXiv 2019), Tassano et al.

    · FastDVDNet [Web] [Code] [An Unofficial PyTorch Code] [PDF]

    o FastDVDnet: Towards Real-Time Video Denoising Without Explicit Motion Estimation (ArXiv 2019), Tassano et al.

    · ViDeNN [PDF]

    o ViDeNN: Deep Blind Video Denoising (ArXiv 2019), Calus et al.

    · Multi-Level Wavelet-CNN [PDF]

    o Multi-Level Wavelet Convolutional Neural Networks (IEEE Access), Liu et al.

    · PRIDNet [PDF]

    o Pyramid Read Image Denoising Network (Arxiv 2019), Zhao et al.

    · CycleISP [PDF]

    o CycleISP: Real Image Restoration via Improved Data Synthesis (CVPR 2020), Zamir et al.

    · MIRNEt [PDF]

    o MIRNEt: Learning Enriched Features for Real Image Restoration and Enhancement (ECCV 2020), Zamir et al.

    Sparsity and Low-rankness Combined

    · STROLLR-2D [PDF]

    o When Sparsity Meets Low-Rankness: Transform Learning With Non-Local Low-Rank Constraint for Image Restoration (ICASSP 2017), Wen et al.

    Combined with High-Level Tasks

    · Meets High-level Tasks [PDF]

    o When Image Denoising Meets High-Level Vision Tasks: A Deep Learning Approach (IJCAI 2018), Liu et al.

    Image Noise Level Estimation

    · SINLE [PDF]

    o Single-image Noise Level Estimation for Blind Denoising (TIP 2014), Liu et al.

    · CBDNet [PDF]

    o Toward Convolutional Blind Denoising of Real Photographs (Arxiv), Guo et al.

    · HyperIQA[PDF]

    o Blindly Assess Image Quality in the Wild Guided by A Self-Adaptive Hyper Network (CVPR 2020), Su et al.

    · PaQ-2-PiQ [PDF]

    o From Patches to Pictures (PaQ-2-PiQ): Mapping the Perceptual Space of Picture Quality (Arxiv), Ying et al.

    学术问题付费咨询及相关探讨
    博士,担任《Mechanical System and Signal Processing》审稿专家,担任
    《中国电机工程学报》优秀审稿专家,《控制与决策》,《系统工程与电子技术》等EI期刊审稿专家,担任《计算机科学》,《电子器件》 , 《现代制造过程》 ,《船舶工程》 ,《轴承》 ,《工矿自动化》 ,《重庆理工大学学报》 ,《噪声与振动控制》 ,《机械传动》 ,《机械强度》 ,《机械科学与技术》 ,《机床与液压》,《声学技术》,《应用声学》,《石油机械》,《西安工业大学学报》等中文核心审稿专家。
    擅长领域:现代信号处理,机器学习,深度学习,数字孪生,时间序列分析,设备缺陷检测、设备异常检测、设备智能故障诊断与健康管理PHM等。

  • 相关阅读:
    自助商业智能平台 HK-Visokio Omniscope 详解!
    ADSP-21569/ADSP-21593的开发入门(中)
    linux- socket编程-直接获取网卡-packet- sokcket
    3.2-分类-Logistic回归
    LeetCode
    Ubuntu GDB 的基本使用-传参调用
    Java并发编程常见面试题总结
    如何查看自己的GPU型号以及配置信息
    计算机网络(谢希仁)第八版课后题答案(第一章)
    简单的前端语言
  • 原文地址:https://blog.csdn.net/weixin_39402231/article/details/133926506