• 买卖股票的最佳时机 II[中等]


    优质博文:IT-BLOG-CN

    一、题目

    给你一个整数数组prices,其中prices[i]表示某支股票第i天的价格。在每一天,你可以决定是否购买和/或出售股票。你在任何时候最多只能持有一股股票。你也可以先购买,然后在同一天出售。返回你能获得的最大利润。

    示例 1:
    输入:prices = [7,1,5,3,6,4]
    输出:7
    解释:在第2天(股票价格= 1)的时候买入,在第3天(股票价格= 5)的时候卖出, 这笔交易所能获得利润= 5 - 1 = 4。随后,在第 4 天(股票价格 = 3)的时候买入,在第 5 天(股票价格 = 6)的时候卖出, 这笔交易所能获得利润 = 6 - 3 = 3 。
    总利润为 4 + 3 = 7 。

    示例 2:
    输入:prices = [1,2,3,4,5]
    输出:4
    解释:在第1天(股票价格= 1)的时候买入,在第5天 (股票价格= 5)的时候卖出, 这笔交易所能获得利润= 5 - 1 = 4。总利润为4

    示例 3:
    输入:prices = [7,6,4,3,1]
    输出:0
    解释:在这种情况下, 交易无法获得正利润,所以不参与交易可以获得最大利润,最大利润为0

    1 <= prices.length <= 3 * 104
    0 <= prices[i] <= 104

    二、代码

    【1】动态规划: 定义状态dp[i][0]表示第i天交易完后手里没有股票的最大利润,dp[i][1]表示第i天交易完后手里持有一支股票的最大利润(i0开始)。考虑dp[i][0]的转移方程,如果这一天交易完后手里没有股票,那么可能的转移状态为前一天已经没有股票,即dp[i−1][0],或者前一天结束的时候手里持有一支股票,即dp[i−1][1],这时候我们要将其卖出,并获得prices[i]的收益。因此为了收益最大化,我们列出如下的转移方程:dp[i][0]=max⁡{dp[i−1][0],dp[i−1][1]+prices[i]}再来考虑dp[i][1],按照同样的方式考虑转移状态,那么可能的转移状态为前一天已经持有一支股票,即dp[i−1][1],或者前一天结束时还没有股票,即dp[i−1][0],这时候我们要将其买入,并减少prices[i]的收益。可以列出如下的转移方程:dp[i][1]=max⁡{dp[i−1][1],dp[i−1][0]−prices[i]}

    对于初始状态,根据状态定义我们可以知道第0天交易结束的时候dp[0][0]=0,dp[0][1]=−prices

    因此,我们只要从前往后依次计算状态即可。由于全部交易结束后,持有股票的收益一定低于不持有股票的收益,因此这时候dp[n−1][0]的收益必然是大于dp[n−1][1]的,最后的答案即为dp[n−1][0]

    class Solution {
        public int maxProfit(int[] prices) {
            if (prices.length < 2) {
                return 0;
            }
            // 思路:通过二维数组表示当前的两种状态 prices[i][0] 表示持有现金 prices[i][1]表示持有股票,每次遍历获取Max
            int[][] dp = new int[prices.length][2];
    
            // 初始化0
            dp[0][0] = 0;
            dp[0][1] = -prices[0];
            for (int i = 1; i < prices.length; i++) {
                dp[i][0] = Math.max(dp[i-1][0], dp[i-1][1] + prices[i]);
                dp[i][1] = Math.max(dp[i-1][1], dp[i-1][0] - prices[i]);
            }
            return dp[prices.length - 1][0];
        }
    }
    
    • 1
    • 2
    • 3
    • 4
    • 5
    • 6
    • 7
    • 8
    • 9
    • 10
    • 11
    • 12
    • 13
    • 14
    • 15
    • 16
    • 17
    • 18

    注意到上面的状态转移方程中,每一天的状态只与前一天的状态有关,而与更早的状态都无关,因此我们不必存储这些无关的状态,只需要将dp[i−1][0]dp[i−1][1]存放在两个变量中,通过它们计算出dp[i][0]dp[i][1]并存回对应的变量,以便于第i+1天的状态转移即可。

    class Solution {
        public int maxProfit(int[] prices) {
            int n = prices.length;
            int dp0 = 0, dp1 = -prices[0];
            for (int i = 1; i < n; ++i) {
                int newDp0 = Math.max(dp0, dp1 + prices[i]);
                int newDp1 = Math.max(dp1, dp0 - prices[i]);
                dp0 = newDp0;
                dp1 = newDp1;
            }
            return dp0;
        }
    }
    
    • 1
    • 2
    • 3
    • 4
    • 5
    • 6
    • 7
    • 8
    • 9
    • 10
    • 11
    • 12
    • 13

    时间复杂度: O(n)其中n为数组的长度。一共有2n个状态,每次状态转移的时间复杂度为O(1),因此时间复杂度为O(2n)=O(n)
    空间复杂度: O(n)我们需要开辟O(n)空间存储动态规划中的所有状态。如果使用空间优化,空间复杂度可以优化至O(1)

    【2】贪心: 由于股票的购买没有限制,因此整个问题等价于寻找x个不相交的区间(li,ri]使得如下的等式最大化∑i=1xa[ri]−a[li]其中li表示在第li天买入,ri表示在第ri天卖出。同时我们注意到对于(li,ri]这一个区间贡献的价值a[ri]−a[li],其实等价于(li,li+1],(li+1,li+2],…,(ri−1,ri]这若干个区间长度为1的区间的价值和,即a[ri]−a[li]=(a[ri]−a[ri−1])+(a[ri−1]−a[ri−2])+…+(a[li+1]−a[li])因此问题可以简化为找x个长度为1的区间(li,li+1]使得∑i=1xa[li+1]−a[li]价值最大化。

    贪心的角度考虑我们每次选择贡献大于0的区间即能使得答案最大化,因此最后答案为ans=∑i=1n−1max⁡{0,a[i]−a[i−1]}其中n为数组的长度。需要说明的是,贪心算法只能用于计算最大利润,计算的过程并不是实际的交易过程。

    考虑题目中的例子[1,2,3,4,5],数组的长度n=5,由于对所有的1≤i都有a[i]>a[i−1],因此答案为ans=∑i=1n−1a[i]−a[i−1]=4但是实际的交易过程并不是进行4次买入和4次卖出,而是在第1天买入,第5天卖出。

    class Solution {
        public int maxProfit(int[] prices) {
            int ans = 0;
            int n = prices.length;
            for (int i = 1; i < n; ++i) {
                ans += Math.max(0, prices[i] - prices[i - 1]);
            }
            return ans;
        }
    }
    
    • 1
    • 2
    • 3
    • 4
    • 5
    • 6
    • 7
    • 8
    • 9
    • 10

    时间复杂度: O(n)其中n为数组的长度。我们只需要遍历一次数组即可。
    空间复杂度: O(1)只需要常数空间存放若干变量。

  • 相关阅读:
    北京程序员的真实一天!!!!!
    多尺度正余弦优化算法-附代码
    Vue 导出前端数据报表为xlsx文件
    软件开发进度中,如何进行高风险预警管理?
    Vue——Vue脚手架安装的详细教程
    Android开发,获取U盘的路径
    正则表达式基础知识
    欧盟消费品重金属含量法规简介
    Sharding sphere分库分表
    React 全栈体系(十八)
  • 原文地址:https://blog.csdn.net/zhengzhaoyang122/article/details/133936767