• 【NVIDIA】获取GPU利用率-cpp.md


    深度学习推理中,为了更加高效的利用 GPU,在多个推理任务实例中,创建新的实例以及分配到不同的 GPU 设备上,需要关注到当前 GPU 还有多少剩余,以便更好的分配

    代码目录

    .
    ├── CMakeLists.txt
    ├── src
    │   └── main.cpp
    ├── ubuntu_build.sh
    └── win10_vs2019_build.bat
    
    • 1
    • 2
    • 3
    • 4
    • 5
    • 6

    windows

    前提条件

    确保已经安装了 Nvidia 驱动和 CUDA 安装包

    nvidia-smi.exe 
    
    • 1

    可以运行,截图如下:
    在这里插入图片描述

    nvcc --version
    
    • 1

    可以运行,截图如下:
    在这里插入图片描述

    cuda 安装目录

    C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v11.8

    修改 CMakeLists.txt 文件中的 CUDA_ROOT 为 自己安装的目录

    NOTE: 注意斜杠 / 和反斜杠 \

    构建项目

    打开控制台,执行 win10_vs2019_build.bat , 或者直接双击 win10_vs2019_build.bat

    NOTE: 前提是安装了 vs2019, “Visual Studio 16 2019”,其他 VS 版本可以同步替换

    编译

    进入 win10_build 目录,双击 get_gpu_info.sln, 修改编译类型为 Release,编译后生成 get_gpu_info.exe,双击运行即可。

    linux

    在这里插入图片描述
    在这里插入图片描述

    构建,编译,执行

    bash ubuntu_build.sh
    
    • 1

    在这里插入图片描述

    代码附录

    src/main.cpp

    /***************************************************************************\
    |*                                                                           *|
    |*      Copyright 2010-2016 NVIDIA Corporation.  All rights reserved.        *|
    |*                                                                           *|
    |*   NOTICE TO USER:                                                         *|
    |*                                                                           *|
    |*   This source code is subject to NVIDIA ownership rights under U.S.       *|
    |*   and international Copyright laws.  Users and possessors of this         *|
    |*   source code are hereby granted a nonexclusive, royalty-free             *|
    |*   license to use this code in individual and commercial software.         *|
    |*                                                                           *|
    |*   NVIDIA MAKES NO REPRESENTATION ABOUT THE SUITABILITY OF THIS SOURCE     *|
    |*   CODE FOR ANY PURPOSE. IT IS PROVIDED "AS IS" WITHOUT EXPRESS OR         *|
    |*   IMPLIED WARRANTY OF ANY KIND. NVIDIA DISCLAIMS ALL WARRANTIES WITH      *|
    |*   REGARD TO THIS SOURCE CODE, INCLUDING ALL IMPLIED WARRANTIES OF         *|
    |*   MERCHANTABILITY, NONINFRINGEMENT, AND FITNESS FOR A PARTICULAR          *|
    |*   PURPOSE. IN NO EVENT SHALL NVIDIA BE LIABLE FOR ANY SPECIAL,            *|
    |*   INDIRECT, INCIDENTAL, OR CONSEQUENTIAL DAMAGES, OR ANY DAMAGES          *|
    |*   WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN      *|
    |*   AN ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING     *|
    |*   OUT OF OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOURCE      *|
    |*   CODE.                                                                   *|
    |*                                                                           *|
    |*   U.S. Government End Users. This source code is a "commercial item"      *|
    |*   as that term is defined at 48 C.F.R. 2.101 (OCT 1995), consisting       *|
    |*   of "commercial computer  software" and "commercial computer software    *|
    |*   documentation" as such terms are used in 48 C.F.R. 12.212 (SEPT 1995)   *|
    |*   and is provided to the U.S. Government only as a commercial end item.   *|
    |*   Consistent with 48 C.F.R.12.212 and 48 C.F.R. 227.7202-1 through        *|
    |*   227.7202-4 (JUNE 1995), all U.S. Government End Users acquire the       *|
    |*   source code with only those rights set forth herein.                    *|
    |*                                                                           *|
    |*   Any use of this source code in individual and commercial software must  *|
    |*   include, in the user documentation and internal comments to the code,   *|
    |*   the above Disclaimer and U.S. Government End Users Notice.              *|
    |*                                                                           *|
    |*                                                                           *|
    \***************************************************************************/
    
    #include 
    #include 
    
    static const char *convertToComputeModeString(nvmlComputeMode_t mode)
    {
        switch (mode)
        {
        case NVML_COMPUTEMODE_DEFAULT:
            return "Default";
        case NVML_COMPUTEMODE_EXCLUSIVE_THREAD:
            return "Exclusive_Thread";
        case NVML_COMPUTEMODE_PROHIBITED:
            return "Prohibited";
        case NVML_COMPUTEMODE_EXCLUSIVE_PROCESS:
            return "Exclusive Process";
        default:
            return "Unknown";
        }
    }
    
    
    int main(int argc, char* argv[])
    {
        nvmlReturn_t result;
        unsigned int device_count;
    
        // 初始化 NVML
        result = nvmlInit();
        if (result != NVML_SUCCESS)
        {
            printf("Failed to initialize NVML: %s\n", nvmlErrorString(result));
            printf("Press ENTER to continue...\n");
            getchar();
            return (int)(result);
        }
    
        // 获取设备数量
        result = nvmlDeviceGetCount(&device_count);
        if (result != NVML_SUCCESS)
        {
            printf("Failed to get device count: %s\n", nvmlErrorString(result));
            printf("Press ENTER to continue...\n");
            getchar();
            return (int)(result);
        }
    
        // 遍历设备数量
        printf("\nFound %u device%s, Listing devices:\n", device_count, 
            device_count != 1 ? "s" : "");
        printf("--------------------------------------------------------------\n");
        printf("| Device ID | Device Name\t\t|      pci.busId     | GPU Util | Mem Util |\n");
        for (int i = 0; i < device_count; ++i) 
        {
            nvmlDevice_t device;
            char device_name[NVML_DEVICE_NAME_BUFFER_SIZE];
            nvmlPciInfo_t pci;
            nvmlComputeMode_t compute_mode;
    
            // 获取设备, 也可以使用其他方式来获取设备
            // nvmlDeviceGetHandleBySerial
            // nvmlDeviceGetHandleByPciBusId
            result = nvmlDeviceGetHandleByIndex(i, &device);
            if (result != NVML_SUCCESS)
            {
                printf("Failed to get handle for device %d: %s\n", i, 
                    nvmlErrorString(result));
                continue;
            }        
    
            // 获取 GPU 设备名称    
            result = nvmlDeviceGetName(device, device_name, NVML_DEVICE_NAME_BUFFER_SIZE);
            if (result != NVML_SUCCESS)
            {
                printf("Failed to get name for device %d: %s\n", i, 
                    nvmlErrorString(result));
                continue;
            }
    
            // pci.busId is very useful to know which device physically you're talking to
            // Using PCI identifier you can also match nvmlDevice handle to CUDA device.
            result = nvmlDeviceGetPciInfo(device, &pci);
            if (result != NVML_SUCCESS)
            {
                printf("Failed to get pci info for device %u: %s\n", i, 
                    nvmlErrorString(result));
                continue;
            }
    
            // 获取 GPU 设备的利用率
            nvmlUtilization_st device_utilization;
            result = nvmlDeviceGetUtilizationRates(device, &device_utilization);
            if (result != NVML_SUCCESS)
            {
                printf("Failed to get utilization for device %d: %s\n", i, 
                    nvmlErrorString(result));
                continue;
            }
    
            printf("|     %d     | %s\t| [%s] |    %u %%  |    %u %%   | \n",
                   i, device_name, pci.busId, device_utilization.gpu, device_utilization.memory);
            printf("--------------------------------------------------------------\n");
    
            // 改变 GPU 状态的简单示例
            result = nvmlDeviceGetComputeMode(device, &compute_mode);
            if (NVML_ERROR_NOT_SUPPORTED == result)
            {
                printf("\t This is not CUDA capable device\n");
            }       
            else if (NVML_SUCCESS != result)
            {
                printf("Failed to get compute mode for device %u: %s\n", i, nvmlErrorString(result));
                continue;
            }
            else
            {
                // try to change compute mode
                printf("\t Changing device's compute mode from '%s' to '%s'\n",
                    convertToComputeModeString(compute_mode),
                    convertToComputeModeString(NVML_COMPUTEMODE_PROHIBITED));
    
                result = nvmlDeviceSetComputeMode(device, NVML_COMPUTEMODE_PROHIBITED);
                if (NVML_ERROR_NO_PERMISSION == result)
                {
                    printf("\t\t Need root privileges to do that: %s\n", nvmlErrorString(result));
                }        
                else if (NVML_ERROR_NOT_SUPPORTED == result)
                {
                    printf("\t\t Compute mode prohibited not supported. You might be running on\n"
                        "\t\t windows in WDDM driver model or on non-CUDA capable GPU\n");
                }
                else if (NVML_SUCCESS != result)
                {
                    printf("\t\t Failed to set compute mode for device %u: %s\n", i, nvmlErrorString(result));
                    continue;
                }
                else
                {
                    printf("\t Restoring device's compute mode back to '%s'\n",
                        convertToComputeModeString(compute_mode));
                    result = nvmlDeviceSetComputeMode(device, compute_mode);
                    if (NVML_SUCCESS != result)
                    {
                        printf("\t\t Failed to restore compute mode for device %u: %s\n", i, nvmlErrorString(result));
                        continue;
                    }
                }
            }
        }
    
        // 关闭 NVML 
        nvmlShutdown();
        if (NVML_SUCCESS != result)
        {
            printf("Failed to shutdown NVML: %s\n", nvmlErrorString(result));
            printf("Press ENTER to continue...\n");
            getchar();
            return (int)(result);
        }
    
        printf("All done.\n");
        printf("Press ENTER to continue...\n");
        getchar();
        return 0;
    }
    
    • 1
    • 2
    • 3
    • 4
    • 5
    • 6
    • 7
    • 8
    • 9
    • 10
    • 11
    • 12
    • 13
    • 14
    • 15
    • 16
    • 17
    • 18
    • 19
    • 20
    • 21
    • 22
    • 23
    • 24
    • 25
    • 26
    • 27
    • 28
    • 29
    • 30
    • 31
    • 32
    • 33
    • 34
    • 35
    • 36
    • 37
    • 38
    • 39
    • 40
    • 41
    • 42
    • 43
    • 44
    • 45
    • 46
    • 47
    • 48
    • 49
    • 50
    • 51
    • 52
    • 53
    • 54
    • 55
    • 56
    • 57
    • 58
    • 59
    • 60
    • 61
    • 62
    • 63
    • 64
    • 65
    • 66
    • 67
    • 68
    • 69
    • 70
    • 71
    • 72
    • 73
    • 74
    • 75
    • 76
    • 77
    • 78
    • 79
    • 80
    • 81
    • 82
    • 83
    • 84
    • 85
    • 86
    • 87
    • 88
    • 89
    • 90
    • 91
    • 92
    • 93
    • 94
    • 95
    • 96
    • 97
    • 98
    • 99
    • 100
    • 101
    • 102
    • 103
    • 104
    • 105
    • 106
    • 107
    • 108
    • 109
    • 110
    • 111
    • 112
    • 113
    • 114
    • 115
    • 116
    • 117
    • 118
    • 119
    • 120
    • 121
    • 122
    • 123
    • 124
    • 125
    • 126
    • 127
    • 128
    • 129
    • 130
    • 131
    • 132
    • 133
    • 134
    • 135
    • 136
    • 137
    • 138
    • 139
    • 140
    • 141
    • 142
    • 143
    • 144
    • 145
    • 146
    • 147
    • 148
    • 149
    • 150
    • 151
    • 152
    • 153
    • 154
    • 155
    • 156
    • 157
    • 158
    • 159
    • 160
    • 161
    • 162
    • 163
    • 164
    • 165
    • 166
    • 167
    • 168
    • 169
    • 170
    • 171
    • 172
    • 173
    • 174
    • 175
    • 176
    • 177
    • 178
    • 179
    • 180
    • 181
    • 182
    • 183
    • 184
    • 185
    • 186
    • 187
    • 188
    • 189
    • 190
    • 191
    • 192
    • 193
    • 194
    • 195
    • 196
    • 197
    • 198
    • 199
    • 200
    • 201
    • 202
    • 203

    CMakeLists.txt

    cmake_minimum_required(VERSION 3.0.0)
    set(PROJECT_NAME get_gpu_info)
    project(${PROJECT_NAME})
    
    SET(CMAKE_CONFIGURATION_TYPES ${CMAKE_BUILD_TYPE} CACHE STRING "Release" FORCE)
    
    add_executable(${PROJECT_NAME} src/main.cpp)
    
    if (WIN32)
        set(CUDA_ROOT "C:/Program Files/NVIDIA GPU Computing Toolkit/CUDA/v11.8")
        include_directories("${CUDA_ROOT}/include/")
        target_link_libraries(${PROJECT_NAME} "${CUDA_ROOT}/lib/x64/nvml.lib")
    endif()
    
    if (UNIX)
        set(CUDA_ROOT "/usr/local/cuda")
        include_directories("${CUDA_ROOT}/include/")
        link_directories("${CUDA_ROOT}/lib64/stubs")
        target_link_libraries(${PROJECT_NAME}  libnvidia-ml.so)
    endif()
    
    • 1
    • 2
    • 3
    • 4
    • 5
    • 6
    • 7
    • 8
    • 9
    • 10
    • 11
    • 12
    • 13
    • 14
    • 15
    • 16
    • 17
    • 18
    • 19
    • 20

    win10_vs2019_build.bat

    ::在主CMakeLists.txt 里设置opencv和ncnn的路径
    set build_dir=win10_build
    
    ::删除编译目录
    rm -rf %build_dir%
    
    ::重新创建编译目录
    mkdir %build_dir%
    
    ::进入编译目录
    cd %build_dir%
    
    ::配置, 此处可以利用 -D 添加编译选项
    cmake -G "Visual Studio 16 2019" -A x64 -DCMAKE_BUILD_TYPE=Release ..
    
    ::退出目录
    cd ..
    
    • 1
    • 2
    • 3
    • 4
    • 5
    • 6
    • 7
    • 8
    • 9
    • 10
    • 11
    • 12
    • 13
    • 14
    • 15
    • 16
    • 17

    ubuntu_build.sh

    #!/bin/bash
    
    build_dir=ubuntu2204_build
    
    # 删除编译目录
    rm -rf ${build_dir}
    
    # 重新创建目录
    mkdir ${build_dir}
    
    # 进入目录
    cd ${build_dir}
    
    # 构建项目
    cmake -DCMAKE_BUILD_TYPE=RELEASE .. 
    
    # 编译
    make -j8
    
    # 拷贝出来
    cp get_gpu_info ../
    cd ..
    
    # 执行
    ./get_gpu_info
    
    
    • 1
    • 2
    • 3
    • 4
    • 5
    • 6
    • 7
    • 8
    • 9
    • 10
    • 11
    • 12
    • 13
    • 14
    • 15
    • 16
    • 17
    • 18
    • 19
    • 20
    • 21
    • 22
    • 23
    • 24
    • 25
    • 26
  • 相关阅读:
    Kafka消费者分区分配策略
    公司大佬推荐测试进阶书单
    学习笔记—Grafana监控docker--mysql、redis的实战
    算法小讲堂之平衡二叉树|AVL树(超详细~)
    企业数字化神经网络
    响应式编程(Reactive Programming)是什么?
    热门敏捷开发管理工具
    使用elementUI的form表单和Steps步骤条如何让rules分步骤校验
    程序编码风格要求
    java计算机毕业设计实验中心网站(附源码、数据库)
  • 原文地址:https://blog.csdn.net/zhoujinwang/article/details/133907425