
在众多小目标检测方法中,最实用的方法通常包括以下几个方面:数据增广(例如Stitcher、copy-paste)以增加训练样本的多样性,使用放大输入图片的策略(如GAN放大再检测、将图像裁剪成patch再放大,如SAHI方法)来处理小物体,利用高分辨率的特征(如QueryDet[5])以捕捉更多小物体细节,或者专门为极小目标(<=16*16像素)设计的检测方法,并改进标签分配策略,以增加小目标的正样本数量(例如RFLA和DotD)。这些方法的共同之处在于它们的简洁性,遵循着“大道至简”的原则。它们的核心思想都很朴素,无非是通过增加小目标的训练样本数量(通过数据增广)、将小物体视为大物体(通过放大输入图片或使用高分辨率特征)以及改善小目标的正样本数量(通过适当的标签分配方法),从而有效地应对小目标检测的挑战。
1.Augmentation for small object detection, CVPR 2019.[1] Relation Networks for Object Detection, CVPR 2018.
2.Spatial-aware Graph Relation Network for Large-scale Object Detection, CVPR 2019.
3.Reasoning-RCNN: Unifying Adaptive Global Reasoning into Large-scale Object Detection, CVPR 2019.
4.HTD: Heterogeneous Task Decoupling for Two-Stage Object Detection, TIP 2021.
5.QueryDet: Cascaded Sparse Query for Accelerating High-Resolution Small Object Detection, CVPR 2022.
6.Scale Match for Tiny Person Detection, WACV 2020.
7.Tiny object detection in aerial images, ICPR 2021.
8.RFLA: Gaussian Receptive Field based Label Assignment for Tiny Object Detection, ECCV 2022.
9.Dot Distance for Tiny Object Detection in Aerial Images, CVPRW 2021.
10.Stitcher: Feedback-driven Data Provider for Object Detection, CVPR 2020.
11.Augmentation for small object detection, CVPR 2019.
12.Slicing Aided Hyper Inference and Fine-tuning for Small Object Detection, ICIP 2022.