前向
均值
μ
n
g
=
∑
i
=
1
M
(
X
i
)
M
(1)
{\large \mathit{\color{Blue} \mu_{ng} = \frac{\sum_{i=1}^M(X^{i})}{M}} } \tag{1}
μng=M∑i=1M(Xi)(1)
方差
σ
n
g
2
=
∑
i
=
1
M
(
X
i
−
μ
n
g
)
M
(2)
{\large \mathit{\color{Blue} \sigma_{ng}^2 = \frac{\sum_{i = 1}^{M}(X^i - \mu_{ng})}{M}}} \tag{2}
σng2=M∑i=1M(Xi−μng)(2)
归一化:
令
r
s
i
g
=
1
σ
n
g
2
+
ε
(3)
{\large \mathit{\color{Blue}{rsig = \frac{1}{\sqrt{\sigma_{ng}^2 + \varepsilon}}}}} \tag{3}
rsig=σng2+ε1(3)
则:
Y
=
γ
∗
(
X
−
μ
)
∗
r
s
i
g
+
β
=
γ
∗
X
∗
r
s
i
g
+
β
−
γ
∗
μ
∗
r
s
i
g
(4)
{\large \mathit{\color{Blue} Y = \gamma * (X - \mu) * rsig + \beta = \gamma * X * rsig + \beta - \gamma * \mu * rsig}} \tag{4}
Y=γ∗(X−μ)∗rsig+β=γ∗X∗rsig+β−γ∗μ∗rsig(4)
反向
令
S
=
γ
∗
r
s
i
g
(5)
{\large \mathit{\color{Blue} S = \gamma * rsig}} \tag{5}
S=γ∗rsig(5)
B = β − γ ∗ μ ∗ r s i g (6) {\large \mathit{\color{Blue} B = \beta - \gamma * \mu * rsig}} \tag{6} B=β−γ∗μ∗rsig(6)
则
Y
=
S
∗
X
+
B
{\large \mathit{\color{Blue}Y = S * X + B}}
Y=S∗X+B
令
M
=
K
×
H
×
W
(
K
=
C
/
G
r
o
u
p
)
(7)
{\large \mathit{\color{Blue} M = K × H × W (K = C / Group)}} \tag{7}
M=K×H×W(K=C/Group)(7)
由链式法则:
d
L
d
X
=
d
L
d
Y
∗
d
Y
d
X
=
d
L
d
Y
∗
(
d
(
S
∗
X
)
d
X
+
d
B
d
X
)
(8)
{\large \mathit{\color{Blue} \frac{dL}{dX} = \frac{dL}{dY} * \frac{dY}{dX} = \frac{dL}{dY} * (\frac{d(S * X)}{dX} + \frac{dB}{dX})}} \tag{8}
dXdL=dYdL∗dXdY=dYdL∗(dXd(S∗X)+dXdB)(8)
其中:
d ( S ∗ X ) d X = S + X ∗ d S d X = S + X ∗ γ ∗ d r s i g d X (9) {\large \mathit{\color{Blue} \frac{d(S * X)}{dX} = S + X * \frac{dS}{dX} = S + X * \gamma * \frac{drsig}{dX}}} \tag{9} dXd(S∗X)=S+X∗dXdS=S+X∗γ∗dXdrsig(9)
d B d X = − γ ∗ μ ∗ d r s i g d X − γ ∗ r s i g ∗ d μ d X {\large \mathit{\color{Blue} \frac{dB}{dX} = -\gamma * \mu * \frac{drsig}{dX} - \gamma * rsig * \frac{d\mu}{dX}}} dXdB=−γ∗μ∗dXdrsig−γ∗rsig∗dXdμ
d r s i g d X = − r s i g 3 ∗ ( X − μ ) M (10) {\large \mathit{\color{Blue} \frac{drsig}{dX} = -rsig^3 * \frac{(X -\mu)}{M}}} \tag{10} dXdrsig=−rsig3∗M(X−μ)(10)
d μ d X = 1 M (11) {\large \mathit{\color{Blue}\frac{d\mu}{dX} = \frac{1}{M}}} \tag{11} dXdμ=M1(11)
由(5),(8)(9)(10)(11)得:
d
L
d
X
=
d
y
∗
(
S
+
X
∗
γ
∗
r
s
i
g
3
∗
(
μ
−
X
)
M
+
γ
∗
μ
∗
r
s
i
g
3
∗
(
X
−
μ
)
M
−
γ
∗
r
s
i
g
M
)
=
d
y
∗
S
+
d
y
∗
γ
∗
r
s
i
g
3
∗
(
u
−
X
)
M
∗
(
X
−
μ
)
−
d
y
∗
γ
∗
r
s
i
g
M
(12)
{\large \mathit{\color{Blue} \frac{dL}{dX} = dy * (S + X * \gamma * rsig^3 * \frac{(\mu - X)}{M} + \gamma * \mu * rsig^3 * \frac{(X - \mu)}{M} - \frac{\gamma * rsig}{M})}} \\ {\large \mathit{\color{Blue} = dy * S + dy * \gamma * rsig^3 * \frac{(u - X)}{M} * (X - \mu) - dy * \frac{\gamma * rsig}{M}}}\tag{12}
dXdL=dy∗(S+X∗γ∗rsig3∗M(μ−X)+γ∗μ∗rsig3∗M(X−μ)−Mγ∗rsig)=dy∗S+dy∗γ∗rsig3∗M(u−X)∗(X−μ)−dy∗Mγ∗rsig(12)
令
C
1
=
S
=
γ
∗
r
s
i
g
C
2
=
d
y
∗
γ
∗
r
s
i
g
3
∗
μ
−
X
M
C
3
=
−
C
2
∗
μ
−
d
y
∗
γ
∗
r
s
i
g
M
(13)
{\large \mathit{\color{Blue} C_1 = S = \gamma * rsig}} \\ {\large \mathit{\color{Blue} C_2 = dy * \gamma * rsig^3 * \frac{\mu - X}{M}}} \\ {\large \mathit{\color{Blue} C_3 = -C_2 * \mu - \frac{dy * \gamma * rsig}{M}}} \tag{13}
C1=S=γ∗rsigC2=dy∗γ∗rsig3∗Mμ−XC3=−C2∗μ−Mdy∗γ∗rsig(13)
得:
d
x
=
C
1
∗
d
y
+
C
2
∗
X
+
C
3
(14)
{\large \mathit{\color{Blue} dx = C_1 * dy + C_2 * X + C_3}} \tag{14}
dx=C1∗dy+C2∗X+C3(14)