• 机器学习的打分方程汇总


    机器学习的打分方程集合

      受到机器学习(Machine Learning)和深度学习(Deep Learning)等算法模型的创新性冲击,其应用范围涵盖了自然语言处理(Natural Language Processing)、自动驾驶(Autopilot)、金融分析(Financial analysis)和生物医药研发(Biopharmaceutical R&D)等多个领域。其中,应用深度学习算法在预测小分子药物与疾病靶点蛋白之间的结合亲和力方面的设计和应用变得日益重要。分子对接(Molecular Docking)计算中打分方程(Scoring Function)算法通常用于对药物活性数据进行评估、分类、排名或预测,其结果对于决策制定候选药物分子而言至关重要。因此,本文将介绍一些基于机器学习和深度学习的打分方程。

    1. 亲和力预测模型

    ModelAlgorithmRpRMSEReference
    AGL-ScoreGBT0.831.27[13]
    ECIFGBT0.871.17[14]
    AEScoreMLP0.831.22[15]
    OnionNet-2CNN0.861.16[16]
    graphDeltaGNN0.871.05[17]
    PointTransformerCNN+ATT0.851.19[18]

    2. 机器学习打分方程

    Scoring FunctionAlgorithmDescription of protein–ligand complexesReference
    RF-ScoreRFProtein−ligand atom-type pair countsBallester et al. (2010)
    NN-Score 2.0ANNAutodock Vina interaction terms, protein−ligand atom-type pair counts and electrostatic terms (BINANA)Durrant and McCammon (2011)
    ID-ScoreSVMNine categories of descriptors related to protein–ligand interactionsLi et al. (2013)
    SFCscore R F ^{RF} RFRFSFCscore interaction termsZilian and Sotriffer (2013)
    ΔVinaRF 20 _{20} 20RFAutodock Vina interaction terms and additional molecular descriptorsWang and Zhang (2017)
    RI-ScoreRFRigidity index descriptorsNguyen et al. (2017)
    TNet-BPCNNAlgebraic topologyCang and Wei (2017)
    K D E E P _{DEEP} DEEPCNNMolecular descriptors embedded into a 3D gridJiménez et al. (2018)
    TopBP-MLGBTAlgebraic topologyCang et al. (2018)
    TopBP-DLCNNAlgebraic topologyCang et al. (2018)
    PafnucyCNNMolecular descriptors embedded into a 3D gridStepniewska-Dziubinska et al. (2018)
    PLEC-nnDNNHashed fingerprint constructed by pairing ligand and protein atoms according to its environmentWójcikowski et al. (2019)
    EIC-ScoreGBTDifferential geometry representationsNguyen and Wei (2019b)
    AGL-ScoreGBTStatistical features of the adjacency and Laplacian matrices of multiscale weighted labeled algebraic subgraphsNguyen and Wei (2019a)
    OnionNetCNNRotation-free element pair-specific contacts between ligands and protein atoms, grouped into different distance rangesZheng et al. (2019)
    ΔVinaXGBXGBTAutodock Vina score and molecular descriptors, including water moleculesLu et al. (2019)
    NNScore::LDFFNNNNScore 2.0 features and RDKit ligand descriptorsBoyles et al. (2020)
    RosENetCNNMolecular mechanics energies from Rosetta force field and molecular descriptors embedded onto a 3D gridHassan-Harrirou et al. (2020)
    ECIF-GBTGBTProtein−ligand atom-type pair counts considering each atoms connectivityNorberto et al. (2021)
    ECIF::LD-GBTGBTProtein−ligand atom-type pair counts considering each atoms connectivity and RDKit ligand descriptorsNorberto et al. (2021)
  • 相关阅读:
    PyTorch Lightning入门教程(二)
    ISM330DHCXTR IMU-惯性测量单元 工业物联网 运动传感器
    Prometheus安装部署和Exporter集成
    什么是残差网络结构
    来可LCWLAN-600P产品使用和常见问题说明
    Java -- 每日一问:并发包中的 ConcurrentLinkedQueue 和 LinkedBlockingQueue 有什么区别?
    Lesson 2 Thirteen equals one 十三等于一
    Shell编程概述
    Python案例|使用卷积网络对星系图片进行分类
    办公技能——如何写好会议纪要,提升职业素养
  • 原文地址:https://blog.csdn.net/MurphyStar/article/details/133857486